
ChatScript Server Manual
© Bruce Wilcox, gowilcox@gmail.com

Revision 11-30-2013 cs3.74

While the system defaults to running as a stand-alone chatbot under Windows, when run
under LINUX it defaults to being a server.

Nominally (meaning depending on hardware and what your bot does) ChatScript can
process a volley on a single core in 10 milliseconds on a slow machine, thus handling 100
volleys every second from different users using one core. A human-human volley is
often around 15 seconds, so handling 1000 simultaneous users with a single core slow
server is not unreasonable.

The fastest server OS for ChatScript is Linux. The Mac tends to misfire in the OS itself
with heavy client loads. Windows is a much slower server in general. And Linux version
of CS has support for forking chatscript (no such support under Windows), so you can
run a fork of the engine on every core, saturating cpu processing to the max while still
serving a single port. Speedup is nearly linear per core added.

Running the Server

When you run the Mac/LINUX program, it defaults to server mode, port 1024. To run
the server under Windows you must give it a command line parameter specifying a port.

There are various command line parameters to affect behavior, described at the end.

Unique User Names

ChatScript maintains an independent history with each user-bot combination in a single
file in the USER's directory. It is nominally up to you to define some unique name for
each user. There is no login validation service provided by ChatScript; that is your
responsibility. Some simple things which ChatScript supports directly are:

1. If the login name is “.” , the system will assign a user name of the IP address it
receives. This doesn't work from localhost nor will it work if you have a server of
your own relaying between the client and the ChatScript server (since the IP
address will always be of your relay server).

2. If the login name is “guest”, the system will assign a user name of guest
concatenated with the IP address.

You could also use the user's email address as a login id. ChatScript will automatically
convert periods and @ in a user's name to _ , so a login like “gowilcox@gmail.com” will
become gowilcox_gmail_com. Likewise logging in as guest will result in something like
“guest_123_124_155_12”.

1

mailto:gowilcox@gmail.com
mailto:gowilcox@gmail.com

Of course, if the user eventually comes back some other day on a different IP address,
they lose their history. Can’t be helped. And you end up with dead files.

Communicating with the Server

The client webpage/program connects on a socket to the IP and port of the server. If you
are coming from a webpage, the webpage must establish the socket. The system does not
use HTTP. HTTP is an agreement on what port to use (a standard http port) and what
message protocols look like to the HTTP server. Similarly ChatScript uses an agreement
on what port to use (but you get to specify the port) and what the message protocols look
like.

And, each communication is a one-shot deal. The socket is made, the client sends a
message to the server, the server sends data back, AND CLOSES THE CONNECTION.

Given that potentially thousands of users may be using the server at the same time, it is
undesirable for it to try to maintain that many open sockets. If for some reason you need
to maintain a permanent connection to a client, you can write an intermediary server
program that has a permanent socket to the client, and relays messages back and forth
between the client and the ChatScript server.

This is also what you would do if you wanted ChatScript to “push” unsolicited messages
to the client. Your intermediary server can use timeouts to decide to send a specific
message to the ChatScript server, and then relay the result back to the client as an
unsolicited output. Similarly, your intermediate server might receive various
asynchronous events and signals, and can pass requests to ChatScript at that time and
pass the result back to a permanently connected client.

Each chat volley (incoming and outgoing message) is an entirely different connection.
This means the Chatbot server is not devoting resources waiting for a user to reply and
doesn't care how long it takes the user to come back again.

ChatScript Protocol

The message a client sends is a concatenation of three null-terminated text strings.

The first string is the user login name.

The second is the name of the chatbot to talk to. If this is a null string, the system will
connect to the default bot.

The third string is the message. If the message is null, this is a start of new conversation.
This MUST be the first thing you do with a new user. Ideally you do it whenever a new
conversation is starting with that user which is how the system knows the old
conversation ended. Usually script will detect that this is the start of a new conversation

2

and say something like “hello” or “welcome back” to indicate the two parties are starting
up a new conversation, though through the history file the system may have a lot of
information about what has gone on in prior conversations. As long as the user is
connected to the webpage, for example, you wouldn’t send a startup message again.

Due to the requirement of a unique user name, you NORMALLY require the user to enter
a login name once on the client, after which you pass that on each transmission to the
server. You can bypass asking for a user name if you always just use the “guest” or “.”
user names.

The message sent to the server during a conversation should never be null (since that
looks like a conversation start). Either always prepend a blank on every line from the
user, or add a blank if the user presses ENTER without anything else or pass along the
newline/cr character.

The chatbot can wait forever for each input (the connection is terminated for each volley)
and the only way to know that the human “left” is when the human “comes back” with a
start of a new conversation.

Testing the Server

You can test everything on your own machine in Windows using batch files in SERVER
BATCH FILES. Launch the server by double clicking on server.bat and then launch the
client by double clicking on localclient.bat. Since this is on your own machine, firewall
opening a port is unnecessary. Remember that to be a remote server you need to make
your port available for inbound TCP if you have a firewall- if you don’t have a firewall
you must be insane.).

If you run the Windows ChatScript engine with client=ip:port as an argument, it will act
as a client to talk to and test a remote server. The ip address must be numeric and the
:port is optional. The client will start a conversation and then loop with you conversing to
it (assuming your server is running).

For LINUX, just perform the equivalent commands of the batch files (except that since
you can’t readily run multiple apps, you’ll have to background the server presumably by
doing a nohup command on it.

Command Authorization

ChatScript has various :xxxx commands that can be given instead of normal chat input.
These remain valid in server mode, and are a security liability if you have potentially
hostile users. Therefore all :xxxx commands require authorization (even in stand-alone
mode). This is the file “authorizedIP.txt” existing in the top level directory. It will be read
to validate any :xxx command.

3

The authorization file ships with a default “all”, WHICH IS DANGEROUS TO A
SERVER. Normally the file will exist but have its content erased. That will lock out
commands. When you want to issue a command yourself to a running server, you go edit
the file to insert on a line your own IP numeric address (since you have access to the file
system itself, you are obviously an authorized person). Then you can log in to the
ChatScript server and issue a :xxxx command. The file can have any number of lines of
IP addresses to be considered legal. You can also enter L_login lines, which will match a
login name against the user's login. If that matches, that is also authorization. This works
best when user names are assigned by a member authorization system, but it good enough
in short durations if you use a weird enough login, e.g., L_b1r8u2c9e0 (bruce
interspersed with digits).

Revising a Live Server

When you want to change the contents of the server, obviously you could just stop and
start it again. Of course that blocks people from using it in the interim and you might
even cut off a user from getting his response. You don't have to do that.

You can restart a live server without interferring with people. In actuality, the server
starts up by loading all of its data into memory (except for specific users). So the
dictionary, topic data, livedata, etc are all memory resident. This means you can, while
the server is running, revise those files on disk. You can, for example run a stand-alone
copy and rebuilt topics from raw data. Or you can edit livedata files or dictionary files.
None of this impacts a running server.

Then, as an authorized user, you can issue a :restart command. Because the chatbot
server handles one user one volley at a time, when you are talking to the server no one
else is (briefly). So you can tell the server to reload all of its data and that will complete
your turn and it will then merrily handle the next user with the new data.

HOWEVER, each user's record tracks where they have been in a topic. If you have
changed that topic, the record becomes invalid and any memory it has of where they have
been in that topic, or if they are sitting at a rejoinder there waiting for the next user input,
will be forgotten. It's now a fresh topic. All other unchanged topics will not affect the
user in any way.

Preparing for compiling on the Server

I develop the source on a Windows machine and transfer it to a LINUX box. To insure
the source does not have carriage returns, I use :clean to read and write all src directory
files without carriage returns.

Testing for server presence

If you send the message: null 1 null (that’s the null string user id, the string of the
character “1” as bot id, and the null string message, the server will send back the string of

4

the character “1”, with no logging done and minimal load on the server. This constitutes
an echo-test to prove the server is running.

Server Crashes

If the server crashes, it may automatically recover, generating the message “Sorry. I
forgot what I was thinking about.” If your bot personality assigns a message to the user
variable $crashmsg, it will use that instead. One cannot guarantee the server doesn't go
down completely, and I recommend it be on a cron job trying to start it maybe every
minute or every 5. The system will detect if its port is already busy and not start a new
copy if the old one is still running.

Be advised that ChatScript assumes the current directory is the one the executable is in
and accesses its data relative to that. For cron this means you want an entry like:

0,5,10,15,20,25,30,35,40,45,50,55 * * * * cd /home/bruce/ChatScript;
./ChatScript/LinuxChatscript32 2>/home/bruce/cronserver.log

CPU vs IO bound

The ChatScript server consists of a main thread to handle computing a response, a thread
to accept incoming connections, and threads for each connection spawned. The
connection threads handle reading the message from the user, getting the attention of the
main thread to get a response, and then passing that response back to the user. Any
logging is normally done from the connection threads, so the main server is free to spend
all its effort handling volleys.

Under a full load of users, the main thread will nominally be always busy and the system
CPU bound as a consequence. However, the main thread must also read and write user
data for each volley. That may slow things down and make the system IO bound if there
are lots and lots of user files around and the system is using cloud-based files instead of
local ones. This will lower thruput significantly. It can be compensated for by locally
caching active user data. There is a parameter to tell the server to track some number of
users in memory. It will write out those memory copies periodically, but obviously if the
server crashes, some users may be 50 volleys out of date.

Commands affecting the server

Various :xxxx commands primarily control/affect the server.

:show serverlog

Toggles whether the server is logging data into the server logfile.

5

:show echoserver

If server logging is enabled, this will print the entries sent to the log on the print console
as well.

:quit

This stops a running server, causing the program to exit. It will first flush any cached user
files.

:restart

This will force the system to reload all its data files from disk (dictionary, topic data, live
data) and then ask for your login. It's like starting the system from scratch, but it never
stops execution. Good for revising a live server.

:crash

Force a crash to test system behavior during a crash.

:flush

If the server is caching user topic data in memory, this flushes all the cache items to disk.

Command Line Parameters

Either Mac/LINUX or Windows versions accept the following command line args:

Server or Not

port=xxx

This tells the system to be a server and to use the given numeric port. You must do this to
tell Windows to run as a server. The standard port is 1024 but you can use any port.

local

The opposite of the port command, this says run the program as a stand-alone system, not
as a server.

Interface

interface=127.0.0.1

6

By default the value is 0.0.0.0 and the system directly uses a port that may be open to the
internet. You can set the interface to a different value and it will set the local port of the
TCP connection to what you designate.

User Facts

Scripts can direct the system to store individualized data for a user in the user's topic file
in USERS. It can store user variables ($xxx) or facts. Since variables hold only a single
piece of information a script already controls how many of those there are. But facts can
be arbitrarily created by a script and there is no natural limit. As these all take up room in
the user's file, affecting how long it takes to process a volley (due to the time it takes to
load and write back a topic file), you may want to limit how many facts each user can
have written. This is unrelated to universal facts the system has at its permanent disposal
as part of the base system.

fact=xxxx

This limits the user to only the xxxx most recent facts created by his interactions. The
default is 800000 which is HUGE. It's also meaningless if you don't have scripts that
write facts.

User Caching

Each user is tracked via their topic file in USERS. The system must load it and write it
back for each volley and in some cases will become I/O bound as a result (particularly if
the filesystem is not local). You can direct the system to keep a cache in memory of
recent users, to reduce the I/O volume. It will still write out data periodically, but not
every volley. Of course if you do this and the server crashes, writebacks may not have
happened and some system rememberance of user interaction will be lost. Of course if
the system crashes, user's may not think it unusually that the chatbot forgot some of what
happened. The system automatically writes to disk every 50 volleys, so a user file will
never be more out of date than that.

cache=nnn
cache=nnnxmm

This specifies how many users can be cached in memory and how big the cache block
should be for a user. The default block size is 7000 bytes. User files typically are only
around 4000 bytes. If a file is too big for the block, it will just have to write directly to
and from the filesystem. The default cache count is 1. Nothing happens unless you also
activate caching.

save=n

7

This specifies how many volleys should elapse before a cached user is saved to disk.
Default is 50 in server mode and 1 in stand-alone mode. A value of 0 not only causes a
user's data to be written out every volley, but also causes the user record to be dropped
from the cache, so it is read back in every time it is needed (handy when running multi-
core copies of chatscript off the same port).

userhold=xxx

Just because a user is cached doesn't mean he's active. We don't know when he leaves.
We only know he hasn't communicated in a while. If we need a cache block for a new
user and we have run out, we will look to see if any old user has been silent for userhold
seconds. If so, they can be flushed out, and replaced with a more active user. Default is
15 seconds, which is low. 45 seconds might be more reasonable.

Access to server machine itself

sandbox

If the engine is not allowed to alter the server machine other than through the standard
ChatScript directories, you can start it with the parameter “sandbox” which disables
Export and System calls.

Logging or Not

In stand-alone mode the system logs what a user says with a bot in the USERS folder. It
can also do this in server mode. It can also log what the server itself does. But logging
slows down the system. Particularly if you have an intervening server running and it is
logging things, you may have no use whatsoever for ChatScript's logging.

userlog

Store a user-bot log in USERS directory. Stand-alone default if unspecified.

nouserlog

Don't store a user-bot log. Server default if unspecified.

serverlog

Write a server log. Server default if unspecified. The server log will be put into the LOGS
directory under serverlogxxx.txt where xxx is the port.

Noserverlog

Don't write a server log.

Testing a server

8

There are various configurations for having an instance be a client to test a server.

client=xxxx:yyyy

This says be a client to test a remote server at IP xxxx and port yyyy. You will be able to
“login” to this client and then send and receive messages with a server.

client=localhost:yyyy

This says be a client to test a local server on port yyyy. Similar to above.

load=1

This creates a localhost client that constantly sends messages to a server. Works its way
through REGRESS/bigregress.txt as its input (over 100K messages). Can assign different
numbers to create different loading clients (e.g., load=10 creates 10 clients).

dual

Yet another client. But this one feeds the output of the server back as input for the next
round.

There are also command line parameters for controlling memory usage which are not
specific to being a server.

Memory Issues with multiple servers on a machine

If you run multiple servers on a machine, you may find one of them fails to start because
it runs out of memory. ChatScript allocates all the memory it thinks it needs at startup, so
if it succeeds, it won't fail at runtime on a memory request but will run forever. But if
multiple servers allocate too much memory at startup, then a new server trying to startup
may fail. You need to configure the memory used on the command line. Go look at the
advanced doc on command line parameters (non-server).

9

	Running the Server
	Communicating with the Server
	Testing the Server

