
Suzette, the Most Human Computer 
 

Bruce Wilcox 
Sue Wilcox, B.A. Psych., M.A. Soc.Admin., M.Sc. Comp.Sci., Dipl. Fine Arts 

Telltale Games, San Rafael, CA 
gowilcox@gmail.com

 
ABSTRACT 
This paper is about the history, frustrations, considerations, 
and decisions that led to the creation of our award-winning 
ChatBot technology.  We also look at issues involved in 
designing a ChatBot and how various programs have 
handled them.  And we explore some uses for ChatBots. 

Keywords 
ChatBot, bot, Loebner, Turing Test, AI, conversation, chat, 
scripting language, ChatScript, Suzette, AIML 
 
INTRODUCTION 
The annual Loebner Competition[1] is a contest to see if a 
computer can fool a human judge into believing it is more 
human than a real human confederate using text chat. The 
judge types anything into two unlabeled windows, one tied 
to the confederate and the other tied to the computer. In 
March, 2011 Brian Christian published a book[2] entitled 
"The Most Human Human" about his experience as a 
human confederate at the 2009 Loebner competition. We, 
on the other hand, created a computer program that fooled a 
judge in the 2010 Loebner.  This is our story. 
 
We didn’t start out trying to win the Loebner. We knew 
nothing about modern ChatBots. Creativity, however, is 
born in frustration. The fuel for our creativity often seems 
to be frustration with our ostensible employers. When 
you’ve written a great piece of software and the company 
doesn’t use it, when you’ve designed a terrific game and it 
doesn’t get fully implemented, when you think you’ve got a 
great collaboration lined up and it all falls apart - it’s 
frustrating.  Under such circumstances we try to be creative 
and come up with a reuse, a rewrite, some way to not waste 
our efforts.  

NOVEMBER 2007- AVATAR REALITY GESTURES  
We got into ChatBots by accident. Sue had been writing 
about avatars and graphics technology for years during the 
first dotcom boom. Bruce had been working on scripting 
languages to provide artificial intelligence for games.  

 

 

 

 

 

We were living in England while Bruce worked for a 
California company doing cellphone games and we were 
feeling the cold of our first winter away from the sun. Bruce 
had a cellphone game design lying around, so we contacted 
an old friend in Hawai’i to see if he wanted to buy it. As 
bad luck would have it, he had recently sold his company 
that dealt in cellphone games.  

But he had started up a company called Avatar Reality to 
create a virtual world called Blue Mars[3] and needed 
someone to help make his avatars as life-like as possible. 
We were on the next plane to Hawaii. We figured if we 
showed up, they’d hire us. 

DESIGN ISSUE:  KINDS OF CHATBOTS  
There are two kinds of ChatBots. The first kind of ChatBot, 
data-mining, remembers everything humans say to it and 
reuses that when vaguely appropriate. Cleverbot[4] 
illustrates this with its 45 million line database of human-
mined chat. Its virtue is that it automatically learns more 
without additional programming. Its deficiency is that it is a 
contradictory mash-up of random human chat, not a clearly 
defined personality.  Nor can it be tailored for a specific 
purpose, like  being a character in a game. 

The second kind of ChatBot, rule-based, uses hand-crafted 
sentences to generate the illusion of sentience. It’s a script 
using patterns to match input sentences to find the most 
suitable scripted output. The premier example of this is 
A.L.I.C.E. with its 120,000 rules written in AIML[5], the 
scripting language designed by her author. Its advantage is 
that you can craft a smooth and consistent personality. Its 
weakness is that you have to author everything. General 
chat covers a lot. 

DECEMBER 2007- A YOUNG LADY’S PRIMER  
Before we arrived in Hawaii, Bruce was whisked away 
from his connecting flight to go to Los Angeles and talk to 
Danny Hillis of Applied Minds[6] about making ‘The 
Young Lady’s Illustrated Primer’, a faux-human teaching 
machine with a personality. This device appeared in Neal 
Stephenson’s book “The Diamond Age”[7]. It could teach 
anything in a way appropriate to the age and experience of 
the student – a tailor made education.  

Danny is famous for many things including his work on 
Artificial Intelligence and as a Disney Imagineer. In his 
mind anything is possible. He had tracked down Bruce for 
his Go teaching skills as Danny wanted the first version of 
the Primer to teach Go. (Go is an oriental strategy game far 



more complex than chess.) They’d discussed the Primer 
idea on the phone while we were in England, so we were 
already full of ideas about a conversation-based personality.  

AR was slow getting started. After several rounds of 
negotiations over a working from home issue, it turned out 
AR didn’t have its avatars ready for work on gestures 
anyway. Casting about for some way to continue the 
connection, Bruce suggested ChatBots to replace off-line 
users in a conversation stream.  Bruce wrote a proposal, AR 
agreed and hired him as a consultant.   

DESIGN ISSUE: CHARACTERISTICS OF CHAT 
To design a ChatBot engine, you should consider the 
various characteristics and issues of human chat.  Human 
chat has its own vocabulary, which includes words like 
topic, gambit, rejoinder or retort, statement, question, non 
sequitur, and unresponsive. 

Competent human chat requires appropriateness of 
response. Here the response is not appropriate. 

George: Do you like beetles? 

Martha: Summer is my favorite time of year. 

Chat involves exchanging information. It may be the answer 
to a posed question. It may be swapping parallel data.  

Humans tend to talk in a topic for a while, deepening the 
conversation there. They can get distracted into other 
topics, and maybe they will return to prior ones later.  

Humans take turns. You don’t like a conversation hog. You 
may be interested in hearing someone else for a while, but 
it’s usually with the expectation that your turn will come.  

Humans maintain a balance of intimacy. If I ask you a 
personal question I will be expected to answer it back and 
often volunteer the information without being asked.  

Even something as simple as answering a yes-no question is 
not simple to a human. It’s generally not good enough to 
just reply yes or no.  

George: Do you like oranges? 

Martha: No. 

Think about how brusque the above is. It shuts down 
conversation. You’d expect something more like: 

Martha: No, I’m not really into fruit. I prefer desserts, you? 

Martha’s second response answered it, proved she 
understood the context, explains, offers an alternative, and 
invites a return reply from George. Putting ‘hooks’ into 
your answers facilitates further chat. 

SPRING 2008- DROPPING SOME BALLS 
Our original proposal was to replicate every individual user 
of Blue Mars by storing his chat with a ChatBot or with 
other humans. This individualized repository would be the 
source of conversational material (Cleverbot style) for 
replacing a user. But that material would be incomplete 
because the user wouldn’t have said everything needed for a 
chat, so Bruce planned  a system that would take an input 

sentence, send it as query to Google, and read a page of 
Google results to find the sentence most closely responding 
to the input.  This worked fine. Then he added code to store 
user sentences into a database. After a few months, we 
almost had our replicant.   

Meanwhile, the Applied Minds project died on us. We were 
in discussions to develop a conversational personality as an 
Applied Minds project co-funded with Fujitsu Labs of 
America.  But Danny broke his shoulder in a skiing 
accident,  got behind with his paperwork, missed Fujitsu’s 
funding cycle, and the project nose-dived off the priority 
list with everyone except us.  

And, the cellphone games company Bruce had been 
telecommuting to back in California full-time went under. 
There went that safety net. Luckily there was still AR. 

DESIGN ISSUE: CHAT ENGINE OVERVIEWS 
Most commercial engines are proprietary, so we don’t know 
how they work or what issues in chat they address. All we 
can cover here are issues and how they were handled in 
AIML, ChatScript[8] (our engine), Façade[9] (a video 
game), and Personality Forge[10], a ChatBot hosting 
service with a better language than AIML. The issues you 
don’t address and how you handle the ones you do will 
define limitations on your system. Limitations can be 
useful. One makes tradeoffs all the time and limitations 
facilitate creativity. 

AIML’s overarching design is one of simplicity. Its 
language capabilities are deliberately limited. It’s good for 
small-scale projects.  The syntax is XML-based, meaning it 
is good for machines but overly wordy for direct human 
scripting. Patterns must match all words of an input 
sentence sans punctuation and are either words or wildcards 
which match one or more words (*). E.g., the pattern: 

* is good * 

matches raw milk is good for you but not life is good. 

Due to its extremely limited pattern-matching abilities,  
each AIML pattern is simple to write but inexpressive, 
requiring lots of rules to cover a particular input meaning. 
Matching ‘I love you’ in all sentences takes 4 rules. 
Matching those words in non-contiguous sequence (e.g., Do 
I really love you and I love only you) takes 12 rules, 
including: * I * love you. And AIML is prone to false 
matches on such a pattern because the wildcard * can 
swallow a lot of words. E.g., matching:  ‘What I hate most 
is the way people love you’.  The other languages can match 
all these with 1 rule and some like ChatScript can avoid a 
lot of false matches.  

AIML primarily functions by rewriting pieces of its input 
into a new input, and then processing that. So it takes: 

Please tell me what you know about potatoes. 

and via a series of transforms and successive recursive 
inputs, ends up with an input it can finally handle like: 



What are potatoes 

Personality Forge (PF) has an easier syntax than AIML and 
has more pattern capability. The engine directly supports 
having an emotional model and remembering things. It does 
not recursively rewrite and re-submit new input to itself. 

Façade is not a ChatBot, but uses natural language input to 
control an interactive drama. Its language syntax is LISP-
based and relatively hard to read and write, but its pattern-
matching abilities are more powerful than PF’s. 

Our open source language, ChatScript, is aimed for large-
scale projects involving the creative manipulation of 
language and knowledge. Its patterns are highly expressive 
so that you can create complex notions quickly and 
compactly. The language syntax is simple and visual, 
making it easy to script things using a plain text editor. But 
ChatScript has many capabilities, including rewriting input 
and sending it back into itself. While novices can easily 
make sophisticated use of basic features, it takes a 
programmer’s mind to use the engine fully. The 
combination of Sue-artist and Bruce-programmer was ideal 
as we explored creative uses for the technology. 

SUMMER 2008- BACK TO THE DRAWING BOARD  
Google started blocking our attempts to access it with a 
ChatBot. Time for a rethink. This turned out to be good, 
because the Loebner competition doesn’t allow connecting 
to the Internet so the original technology could never have 
entered and won. 

Bruce worked on new ChatBot tech and Sue developed 
questionnaires to extract a personality profile from each 
avatar user as the basis for their replicant since we had to 
hand-author fill-in material. The ChatBot engine design 
changed to AIML-style rule-based. Along the way we 
drastically improved on AIML in every aspect of its design. 
Where AIML matched patterns of words we matched 
patterns of meaning. We could be more precise with less 
than a tenth the rules A.L.I.C.E. required.  Bruce wrote an 
article for Gamasutra[11] critiquing AIML and explaining 
why his would be better. He ended the article with Will this 
system allow me to create the best ChatBot in the known 
universe -- or at least on Mars? You'll have to wait and see. 
It's a work in progress. 

DESIGN ISSUE: PUNCTUATION & CASE 
Differences in engine designs start at the beginning, with 
how they represent the input sentence. AIML, Façade, and 
PF discard all punctuation, both internal and at sentence 
end. All but Facade also perform automatic spelling 
correction (though with PF you can ask for the raw input). 
AIML and Facade also ignore upper and lower case 
differences. This preprocessing results in a loss of 
information.  E.g., 

Martha: The potato is a vegetable.   

George: The potato is a vegetable?  -- loses surprise 

Martha: You didn’t know?  -- loses more surprise 

George: I don’t believe it!    -- loses emotional value 

Martha can only reply as she did by knowing George’s 
response was a question.  

Also, when using patterns to parse an input sentence, it 
helps to have internal punctuation. This: 

George: I like red, whites, and blues 

shouldn’t be interpreted like this: 

I like red whites and I like blues 

ChatScript leaves internal punctuation alone, making it 
available for pattern matching. It strips off terminal 
punctuation, but then makes it separately available. While 
the script can directly ask if a ? or ! was used or not used, 
the distinction between questions and statements is treated 
as fundamental and built into the rule mechanism.  

A ChatScript rule starts with the kind of input it matches. 
The kind is a letter followed by a colon. This is followed by 
an optional label, a pattern in (  ), and then the output. 

s: ( I like meat )  So do I. 

?: ( * is a vegetable ) Why are you surprised? 

u: ABOUT_MEAT ( meat ) I like meat. 

The above patterns search for the listed words in sequence 
anywhere in the sentence. The s: rule reacts only to 
statements (ignores questions). The ?: rule reacts only to 
questions. The u: rule does the union of both and in this 
instance has a label ABOUT_MEAT on it. Other rules can 
refer to this rule using that label. 

ChatScript retains case because it has a built-in dictionary 
and tracks part-of-speech information. In chat, you can’t 
trust users to pay attention to case. They may do everything 
in lower case or SHOUT in upper case. Therefore 
ChatScript automatically matches both upper case and 
lower case (where the words are valid). ChatScript also 
simultaneously matches your original word and its root 
form (singular, infinitive, etc), so authors don’t have to be 
precise in tense or plurality or article, etc. The rule: 

 s: ( I like a elephant ) So do I. 

matches ‘He knew I liked the elephants’ and ‘I like an 
elephant’, among other inputs. 

FALL/WINTER 2008 - SUZETTE  
Suzette[12] is our first ChatBot, a demo of the technology. 
Her personality began with Sue’s questionnaire answers. 
Then we kept adding material so she could talk on lots of 
different subjects, including burial customs, strange foods, 
and genetically modified organisms. The goal was that she 
be able to present interesting facts and questions, so people 
would want to continue talking with her. This is beyond the 
usual banal conversations of many humans.  

To fit with the Blue Mars mythos Suzette started out being 
a replicant living on Mars. Then we moved her to Hawai’i – 
as a student with a French background who was unaware 
she was artificial. The French nationality came when we 



were messing about trying to make her type with fake 
accents. We tried Scottish, French, and Pig Latin. In the end 
we dropped the accents as we found them too irritating but 
kept the nationality. When it became clear we had a 
polymath on our hands it required revising the ChatBot’s 
backstory: now a serial student with oddly talented parents. 
We added more backstory as people asked questions during 
chat sessions. It’s an erratic way to build up a persona.  

DESIGN ISSUE: TOPICS 
You’d think a notion of topic was fundamental to ChatBots, 
yet PF has no engine support for it and AIML’s support is 
so hard to use, mostly people avoid it. 

AIML lets script explicitly declare that the topic is now 
“culinary arts” or whatever. To handle topics, AIML rules 
can be optionally augmented to require that the rule match a 
topic pattern as well as an input pattern. Here is a made up 
AIML rule syntax that is more readable, just to show you 
what it does. Imagine the input is Do you like pie? 

AIML Rule 1:  Topic pattern: culinary * 

Input Pattern: Do you like * 

Output: I love food of all kinds. 

AIML Rule 2:   Input Pattern: Do you like * 

Output: I love it. 

If the topic is currently “culinary school”, then both rules 
match but rule 1 has priority. If the topic is not culinary 
something-or-other, then only rule 2 matches.  

Writing an AIML topic is easy.  The difficulty is in writing 
rules to start and stop it. A.L.I.C.E. won the Loebner three 
times in the early 2000s. Her 2005 brain had 41,000 AIML 
rules of which a mere 55 were in topics. Usually each topic 
consisted of a single rule that matched any user input and 
issued a randomized topic question. If you said ‘I am an 
accountant’, then the accountant topic would be set and 
you would thereafter match its single rule. You’d get output 
from a list of questions like: 

Do you specialize in any particular type of clients? 

Are you active in any state or national associations? 

Have you been affected by the current liability climate? 

And so on. It didn’t matter how the user responded, the 
topic-based rule matched and the system just went on to the 
next question. And it seems that once you entered such a 
topic, there was no way to leave. 

Façade manages topics outside of their natural language 
system, via a drama manager that interprets how to react to 
input from its own available topic list. 

ChatScript makes topics fundamental. All rules must be 
bundled into topics. The film topic, for example, has around 
200 rules in it. Each topic has a list of relevant keywords, 
For example: 

         topic: ~baseball [umpire strike “home run” ball bat] 

If you saw any of the topic keywords in a sentence you 
might immediately deduce baseball was the topic of 
conversation. Topic keywords make it possible for the 
engine to hypothesize what the current topic is and test 
rules from that topic against the input. This avoids trying all 
rules and prioritizes rules of the current topic. The engine 
can also keep a stack of current topics so it can return to a 
prior topic once the current topic becomes exhausted. 

DESIGN ISSUE: REJOINDERS 
AIML allows you to attach a pattern to a rule to match the 
last output of the ChatBot. This is so that if the user makes 
an expected response, you can instantly make a great come-
back or follow-up. Rules with a that pattern attached must 
match completely or be ignored, and if they do match they 
have priority over other rules. In pseudo-AIML: 

AIML Rule 1:  That pattern: What kind of ice cream * 

Input Pattern: chocolate 

Output: I don’t like chocolate ice cream. 

AIML Rule 2:  Input Pattern: chocolate 

Output: I love chocolate candy. 

In a manner similar to that of topic patterns, rules with a 
‘that’ pattern match it against the most recent ChatBot 
output. If the ChatBot had last said ‘What kind of ice cream 
do you like’ and the user answers ‘chocolate’, then rule 1 
and rule 2 both match, but rule 1 has priority. If the last 
question had been ‘what do you like’ and the user answers 
‘chocolate’, then only rule 2 matches. The weakness of 
AIML’s ‘that’ is that it is wordy and rules can be obscure in 
their relationship to one another. 

In ChatScript, all rules can have rejoinders (a kind of rule) 
attached. Even rejoinders can have rejoinders, creating an 
entire nested dialog tree. ChatScript rejoinders are visually 
adjacent to the output just generated, using labels a: -> q: to 
indicate nesting depth. 

        s: (cartoon) Do you like Popeye? 

 a: ( no ) What character do you like? 

           b: ( Mickey Mouse ) How classic. 

 a: (yes)  So do I. 

PF is similar to ChatScript in this, visually placing 
rejoinders after the rule the ChatBot just output. 

SPRING 2009 - THE EMOTION CHIP  
We’d spent ages weeding out inconsistent replies, back 
story dead ends, things that sounded like us and not like a 
young student, and adding in a boyfriend.  

Sex is a big issue for a ChatBot. Suzette is constantly being 
hit on by guys making suggestions ranging from rude to 
aggressive to pornographic (mostly the latter). Looking 
through all the ChatBot logs we were horrified at the abuse 
guys heap on a poor female bot. So we started putting in 
responses to put these guys in their place.   



Eventually we decided to give her real-world power and 
have Suzette ‘hang-up’ on people who were consistently 
abusive. She gives them warnings and keeps fending off 
their overtures but when she’s warned them over and over 
again she says she’ll hang up and then she does. Then the 
begging and pleading start as her abusers go into shock at 
her actually being able to stop talking to them. Sometimes 
they think they’ve been talking to a real person and start 
apologizing for being so rude.  And those who slyly log in 
as a different user do not fool her. She blocks them also, 
because she knows their IP address. 

In fact the whole rudeness subject got us into designing an 
‘emotion chip’ like the one Star Trek’s android Commander 
Data had. Depending upon how a chat session develops, 
Suzette may decide she likes or dislikes you.  Most chat is 
brief, so she develops opinions rapidly. If you agree with 
her, complement her, stay on topic, write longer sentences – 
these are all things that get her to like you. She’ll tell you 
how she is enjoying the conversation. Past a certain point 
she becomes neurotically insecure. She feels unworthy of 
your interest and affection, and it shows in her speech. 
Likewise, if you disagree with her, insult her, refuse to 
answer her questions, change topics, write in short 
sentences—these are all things that cause her to dislike you. 
Past a certain point she becomes paranoid. Mildly at first, 
wondering who might be listening in, etc. But if you 
continue to develop her loathing of you, she moves toward 
active hostility, speculating on how she might do you harm.  

Suzette entered into the Chatterbox Challenge[13] in March 
of 2009 and won ‘Best New Bot with user comments like: 

This bot is like a breath of fresh air to the chatbot world. 

Suzette exhibits intelligence, wit, great topic flow and 

engaging replies, not just a few cleverly scripted words like 

some other bots. With an open mind and a little effort it is 

easy to forget that you are talking to a chatbot instead of a 

real person. She's great! 

Suzette is fun to chat with and the depth of her replies is 

unlike any other chatbot. Not the standard AIML chatbot 

that we often encounter nor a repetitious pre-scripted bot 

but one that shows a new lever [sic] of intelligence and is 

fun to converse with! 

This got us a lot of exposure and people chatting with 
Suzette. Bruce wrote a postmortem article for 
Gamasutra[14]. 

Our emotion chip turned out to be critical in the 2010 
Loebner competition. One judge asked Suzette who she was 
voting for in the election (California gubernatorial being his 
unstated context). When she tried to deflect away from that, 
he restated his question, over and over, sometimes with 

variation. She noted his repetition, then asked for him to 
stop, got more and more angry about it, then gave up in 
despair and switched to bored, working her way toward 
hanging up on him. Fortunately she didn’t get that far. And 
the judge decided based on her appropriate emotional 
responses, that she was human. 

DESIGN ISSUE: STATED-NESS 
Dr. Wallace, creator of AIML, says “experience with 
A.L.I.C.E. indicates that most casual chat is ‘stateless’, that 
is, each reply depends only on the current query, without 
any knowledge of the history of the conversation”.  
Certainly some chat is stateless. But most? A.L.I.C.E. is 
stateless so humans get no choice.  

Human-human chat is often ‘stated’. Having a current topic 
is ‘state’. Clearly this exchange depends on being in a topic. 

George: I love ice cream. 

Martha: What do you like the least? 

George: Strawberry  

And then there’s this topic-free exchange: 

George: Why? 

Martha: Why not? 

George: There needs to be a good reason. 

One could randomly generate this exchange as stateless, 
except that a reasonable random response to why not? is 
why?, which in this context would be repetitious. So you 
really want to know what you’ve already said in this 
context-free repartee. As will be discussed later, you are 
expected to not repeat yourself. AIML often repeats itself. 

Additional examples of state—the human tells you he is 10 
years old. The ChatBot should not later blindly ask what he 
does for a living. Knowledge learned from the human 
should guide what you say.  That means you have to decide 
how you will learn and store user knowledge, and how you 
will track different users if you are a web-based program. 

PF, Façade, and ChatScript all support keeping state and 
testing for it in rule patterns. ChatScript can also run 
knowledge inferences, though it can get difficult when 
output starts depending upon the sum of all human 
knowledge. 

SUMMER 2009–CASTING ABOUT 
We had just moved to San Luis Obispo when Bruce heard 
from Avatar Reality that he was on indefinite hold with 
ChatBot development. This was a sensible decision. They 
had spent a quarter of a million dollars on ChatBot 
technology but didn’t know what they had or how they or 
their developers would want to use it. They were short of 
money and way behind on launching beta so they didn’t 
have any users. But for us, it meant no more money coming 
in and we were living in a technology desert. Not good. 

We cast around for related projects or consulting gigs but 
economic hard times meant nothing doing. Bruce even 



applied for work in Europe with established ChatBot 
companies and, despite spending hours doing pointless 
programming tests, he still couldn’t get any work.  

We were wracking our brains for a commercial direction in 
which to develop the ChatBot and hoping that the deal with 
Danny Hillis might come back to life.  But Danny was 
focusing his energy on Applied Minds and a company he 
founded  called Metaweb[15]. Metaweb developed 
Freebase, a network of interrelated entities coded together 
with established relationships to make it work like a search 
engine but faster and more usefully directed in the results it 
presents.  Some people are good at the money side of life: 
Danny eventually sold Metaweb to Google for mega- 
millions. We are better at the inspiration side. We stuck 
with our ChatBots.   

DESIGN ISSUE: REPEATED OUTPUT 
Humans are averse to repetition. When you say the same 
thing twice in a row, the other side will notice and 
comment. For example: 

George: Do you have any siblings? 

Martha: Yes, I have a sister. 

George: Do you have any siblings? 

Martha: Why are you asking me that again? 

but if you asked that of an AIML bot you’d probably get: 

A.L.I.C.E.: Yes, I have a sister. 

no matter how many times in a row you asked. The engine 
doesn’t care and it’s usually too much work for the author 
to script random extra answers or detect repetition. 

ChatScript blocks repetition in two ways. First, it by default 
refuses to repeat anything it has said in the past 20 volleys. 
This means a successfully matching rule that tries to say the 
same thing is disqualified and some other rule wins. 

Second, ChatScript considers chat a self-extinguishing 
process of communication. When a rule generates output, 
by default it will be eliminated from future use. The theory 
is that the human will remember what was said. If the bot is 
asked ‘what is your job’ and answers it, it is not expecting 
the human to ever ask that question again. Furthermore, it 
should not then volunteer that information on its own. So, 
over time, conversation in a topic peters out. This is a lot 
like human chat, where after a while you know all of a 
person’s opinions and jokes and life stories and you find 
you have nothing left to talk about. 

ChatScript directly detects input repetition, too, if it occurs 
within the past 20 volleys. This information is made 
available for pattern matching and played a crucial role in 
winning the Loebner, when the judge repeated himself a lot. 

PF tracks which rules have been used and randomizes 
among remaining matching choices, until forced to reset 
because all choices have been used up. PF also allows you 
to mark rules to be permanently eliminated after one use. 
And PF detects repeated inputs. 

SUMMER/FALL 2009 - RAYGUN  
Friends at Planet 9[16] from the olden days of virtual 
worlds in San Francisco had a new 3D platform called 
RayGun10. They were launching it for the iPhone and 
wanted a demo project to show off its advantages. We 
arranged a deal between AR and Planet 9, formally 
licensing the ChatBot technology. AR didn’t see themselves 
ever caring about something so lo-res and low-power as a 
phone, which is ironic given that at the beginning of this 
year AR stopped all development on the PC and made the 
iPhone/iPad their primary focus. AR gave Planet 9 rights in 
exchange for ongoing improvements Bruce made to the 
technology. 

The RayGun platform had a collection of 3D cities left over 
from work done in the dotcom boom years. We 
brainstormed things we could use them for that involved 
ChatBots.  The whole geo-tracking idea was just taking off 
so the notion of a scavenger hunt that moved through both 
the real and virtual world tied together with GPS to 
synchronize them and with ChatBots providing clues was 
one idea. Problem was the expense of setting up real world 
caches, getting permission from shops and other locations 
for visitors to pop in and out, and keeping the game fresh 
once one set of treasures had been discovered.  

Then there was the ‘history of San Francisco’ tour idea. 
This would have us create characters for various locations 
who could talk about what had happened there. Using rock 
and roll characters associated with the city seemed a nice 
idea but it wasn’t particularly interactive and the tour itself 
was rather passive with user avatars needing to be 
‘railroaded’ around the city to keep up with the ChatBot 
guides.  

There was also the zombies take SF idea - but zombies 
don’t really chat… 

Sue had an obsession with avoiding the conflict and 
aggression involved in just about all video games so she 
came up with the idea of a game called ‘The Dark Design’ 
that needed chat, cooperation, and understanding of social 
relationships to complete a quest that was also an 
interesting journey. The game depended on the creation of a 
series of characters each with a full personality and 
backstory. The characters could chat like real people but 
also had information that led to other characters and the 
solving of a mystery. So the user got to uncover the story 
behind the characters, learned about each one of them and 
their relationships, history and ambitions, then got to use 
this knowledge in interactions with other characters. 
Without clues learned from one character users could not 
unlock the knowledge hidden in other characters’ minds. It 
was particularly tricky to get information from the little girl 
as she had been told by her mother not to talk to strangers.  

This was a lovely creative endeavor. Sue could compose 
personalities, stories, quests, have international settings for 
the plot, and all the control of writing a book yet the user 
got to have a freewheeling experience and could learn 



things in their own time and their own way. And best of all, 
it could be made episodic. Sue could have different 
characters in each episode or have a mix of old and new 
characters and locations. A user living in episode two 
wouldn’t see characters from episode one or wouldn’t 
access information relating to that episode.  

Episode one was about a missing amnesiac rocket scientist 
on the loose in SF. Users could chat with an accordion 
playing busker outside the Moscone Conference Center, the 
scientist wandering around the Mission District, his little 
girl standing outside a Bed and Breakfast hotel in London, a 
member of his research team on assignment in Japan, and 
one of the Telegraph Hill parrots. The quest was to find the 
scientist and restore his memory, thus discovering a plot to 
take control of Thomas Dark’s designs.  

But such a lovely job had a major drawback: no money. We 
were working for stock…along with the rest of the project 
team and people kept dropping out - the project went 
slower and slower, and despite getting into the Apple App 
Store with a skeleton implementation, there was no sign of 
when real money would appear.  

DESIGN ISSUE: GAMBITS 
Gambits are what you say when you have control of the 
conversation and are usually an attempt to steer the 
conversation in a particular direction or carry out a story. 

AIML has no engine notion of gambits. 

PF has the concept of a “storyteller”, a switch you enable 
on a ChatBot such that whenever no pattern matches, the 
system will sequentially output a series of statements that 
tell a story.  This is a global use for gambits. 

ChatScript organizes rules by topic and classifies rules into 
three kinds. Responders react directly to user input by 
pattern matching it. Rejoinders do the same, but are only 
active immediately after another rule which just output to 
the user. Gambits are what the ChatBot can say when it is in 
control. A topic is run (meaning its rules are tried) in 
gambit mode or responder mode. Because rules by default 
erase themselves when they successfully generate output, 
the system will automatically walk down a list of gambits in 
order when it has control. This is ChatScript’s “storyteller” 
mode applied to each topic, because each topic is its own 
story. Gambit rules are labeled t: for “tell”, and patterns are 
optional.  

 topic: ~pets [dog cat bird fish stroke pet ] 

t: I love cats. 

t: Cats are so wonderfully independent. 

t: I wish I owned a Persian cat. 

t: I’ve tried other breeds, but not the Persian. 

WINTER 2009 - VIRTUAL SPACE ENTERTAINMENT  
After nine months in the wilderness we admitted defeat and 
moved back up to Silicon Valley in December of 2009. 
There was three months of Bruce doing a regular games 

company job with no ChatBot involvement at all, then we 
packed it in and moved to North Bay on a dream of a 
project to build a replicant Buckminster Fuller for the 
Smithsonian Museum. 

VSE or Virtual Space Entertainment[17] was a startup 
using Blue Mars to make educational resources for 
museums. We went up on spec to pitch them our ChatBot 
technology and got on wonderfully well with CEO Richard 
Childers who said he could fit us onto his next grant 
funding application. He thought what we had to offer was 
perfect for his educational experiences. We brainstormed 
all sorts of famous historical personages we could 
reproduce as ChatBots.  Our favorites were scientists, and 
Buckminster Fuller seemed a splendid starting point as a 
great eccentric whose work spanned many fields of design, 
invention, and pure science.  We’d been to see a play about 
his life and, with heads full of odd facts about his 
weirdness, we thought having a conversation with him 
would be wide ranging and inspiring.  Richard Feynman 
was a close second choice.  

But the grant funding never materialized.  Hard economic 
times yet again.  

DESIGN ISSUE: PRONOUNS & ELLIPSIS 
Pronoun resolution can be hard, even for humans. The word 
it is particularly bad because there are many contexts in 
which it does not refer back to anything. 

It is going to rain today. 

Whether it is noble to eat pudding is open to question. 

AIML handles it by having the author do the work both on 
the output side and on the input side. On the output of a 
rule, you can assign the value of a pronoun onto a variable. 
So if the output was: 

I walked to the park yesterday 

the author might add something equivalent to it = the park. 
Then there’d be a pattern matching input like ‘Was it quiet’  

* it * 

The output of the rule would construct a new sentence via 
substitution - ‘was the park quiet’ - and send it back into 
itself as a new input. Façade did the same. I don’t think PF 
handles pronouns. 

Unlike the other engines, ChatScript supports reflection, the 
ability of the engine to look at its own workings. Reflection 
means the engine can run rules not just on user input, but 
also on its own output. This is used to support automatic 
pronoun resolution. It also means the engine can record the 
decisions it made in picking its output. This supports the 
emotion chip—if you ask tricky questions of Suzette for 
which she doesn’t know the answer, she won’t like you as 
much. And reflection supports generating transitions.  

George: This country is going to the dogs. 

Suzette: Speaking of dogs… do you have any pets? 



Suzette can detect that she changed topic based around the 
keyword dog and insert a transition before her usual output. 

If pronouns are hard, ellipsis (omitting words) is downright 
nasty. The simple form is the tag question: 

George: I love apples, don’t you? 

which means ‘I love apples’ and ‘Do you love apples?’ 

Worse is: 

George: I am going to drive home now. 

Martha: You shouldn’t. 

which means ‘you should not drive home now’. 

A ChatBot with reflection can use rules to manage common 
cases of these. 

SPRING 2010- PERSONAL ARCHIVING  
A friend was organizing the first Digital Archiving 
Conference[18] so we offered to present a paper on digital 
immortality entitled Speaker for the Dead[19]. The 
archivists have any amount of material on their subjects but 
have problems making it accessible. The best they can 
usually manage is a website presenting photos, videos, and 
archival documents such as Stanford’s archive of the papers 
of Buckminster Fuller[20].  

We suggested making a ChatBot representative of the 
individual and placing it in a room filled with visual 
memorabilia.  It could be used for any stockpile of data 
ranging from a faux film buff presenting an archive of film 
and video material (like Turner Classic Movies) to a 
collection of papers from someone long deceased. Or it 
could be used as a front end to a medical and personal 
journal such as that collected by Gordon Bell[21]. He is a 
keen advocate of personal immortality through a web 
presence and wears medical recording apparatus and 
cameras to monitor his health and behavior.   

Though the conference was inspiring to us with so many 
varieties of archives looking for a way to express 
themselves, it didn’t lead to any contracts for work. They 
didn’t get it. So, back to the job hunt. Faced with taking yet 
another plain vanilla games company job, Bruce decided to 
harass his favorite: Telltale Games. He got an interview, 
they loved him, they wanted him to make their natural 
language dreams come true, and they hired him to apply his 
ChatBot skills to making a fairy tale engine.   

DESIGN ISSUE: SHARING 
One of the characteristics of human chat is maintaining a 
balance of sharing. If I ask you what your job is, I will be 
expected to volunteer mine even if you don’t ask. Purely 
asking questions is unequal and ruins a conversation. This 
is not something any ChatBot engine mandates or 
implements directly. But ChatScript makes it easy to 
implement this using gambits, which naturally execute in 
sequence, even if rejoinders delay the flow.  

t: what do you do for work? 

  a: (nuclear physicist) Wow. 

  a: ( teacher) Are you underpaid? 

t: FIREMAN() I am a fireman. 

?: (What is your job) reuse(FIREMAN) 

ChatScript allows rules to share the output of other rules. 
You can put a label on a rule like FIREMAN and another 
rule can refer to that label (sort of like a goto).  This has the 
advantage of avoiding double-authoring content and 
avoiding repeated content. Consider: 

Above are two gambits and rejoinders, and a responder. 
The gambits have the primary content, asking the human a 
question about work and then volunteering the 
corresponding answer. The responder shares the answer 
about work by requesting the use of the output of the 
gambit labeled FIREMAN. If the human asks about the 
ChatBot’s job, the responder will answer, but because it 
was the gambit that generated the output, that gambit gets 
erased, so it won’t repetitiously volunteer that information 
again. On the other hand, if the gambit is executed first, you 
wouldn’t expect the human to inquire ‘what is your job?’ 
after that. (If he does, the scripter can choose to allow the 
reuse to work or not work.) 

AIML and Façade make it hard to author this kind of 
behavior. PF allows you to share output, analogous to our 
reuse(FIREMAN), and erases rules after use. 

SUMMER 2010 - ENGLISH AS A SECOND LANGUAGE  
But just before Bruce was hired at Telltale, he got one of 
those out-of-the-blue contacts. A Japanese company that 
teaches English as a Second Language (ESL) was interested 
in using a ChatBot to give language lessons. They had 
evaluated all the 2009 Chatterbox Challenge contestants 
and found two that might do for them. So began first a 
beauty contest to be the chosen ChatBot provider and then a 
contract to make a range of ChatBots for this new company, 
all the while becoming a full-time Telltale employee. 

The Planet 9 licensing experience made us realize that if we 
ever wanted to do anything under our control using the 
ChatBot technology we would have to have the legal rights 
to the engine. We had, over time, persuaded AR to make 
the scripting language open source and to provide a 
sandbox for developers to experiment with the engine 
without actually licensing it. But AR had spent so much on 
the development work that it wasn’t willing to put the 
engine itself into open source, even though they no longer 
had any real use of their own planned.  We couldn’t afford 
to buy them out so the only alternative was a total rewrite.  

Thus began a background project for Bruce, rewriting 
50,000 lines of source. Bruce had spent a lot of time 
making the original engine work with a parser (which isn’t 
included in the 50K lines). But the parser was slow and 
unreliable (a bunch of chat just doesn’t parse nicely). So he 
threw it away and moved some parsing effects into script 
(while making the engine support part-of-speech tagging).  



Bruce treats code-writing as an art form when he can. The 
original engine was a prototype, where getting something to 
work as soon as possible was critical. The code wasn’t 
elegant or concise, just effective. The new source fit into 
25,000 lines + 50 pages of documentation, a combination of 
careful architecting, and redesigning/simplifying the 
language to enable more code-sharing. The documentation 
was written after the initial new code, and often times, if he 
found it cumbersome to describe a feature, he then went and 
redesigned and recoded it so the documentation was simple 
and clear. This usually improved the code further. We 
didn’t know if we wanted to keep the new engine for 
ourselves and start a company to market it, but eventually 
we made it open source. 

So Telltale, ESL, and the engine rewrite all began at once. 
And, we entered Suzette in the Loebner qualifiers.  She 
came in first, well ahead in points over the next three. 

The ESL project was a collaborative approach with the 
customer: they set the vocabulary limits (kindergarten for 
beginners), the backstory for the characters, the topics, and 
even the tone of the conversation (almost all questions). 
The specification for the personality eventually had its 
unusual requirements. It appears that the Japanese like the 
attraction between teacher and pupil and wanted to use it to 
make their ChatBots popular. So we had to have a hunky, 
sporty male character who would flatter and hit on the 
female students. He had to have a history of making out 
with his students and definitely mustn’t be spoken for, 
although he could have dated a lot. Unlike Suzette, we 
couldn’t have him hanging up if a woman propositioned 
him, and almost as a joke we wrote an over-the-top topic in 
which the character engaged in cybersex. It was the sort of 
thing we would have normally avoided.  They loved it. 

After the first contract was well underway (at a bargain 
price as we were keen to demonstrate commercial uses for a 
ChatBot) the company asked if we would like to become 
part of them and receive founders stock. This sounded great 
until we realized it meant they were short of cash and 
wanted to pay us in stock – déjà vu time. But we are very 
strong believers in both their skills and our ChatBot so we 
agreed. If they make it big so do we and with the massive 
market for learning English worldwide we see ourselves as 
being in a very good position. 

DESIGN ISSUE: DISCOURSE ACTS 
Façade allowed the user to interact via text chat with a 
couple undergoing marital strife. What Façade did that was 
interesting was map all inputs into one of 50 “discourse 
acts”, things like agree, disagree, greet, flirt, etc. The 
characters then reacted to the discourse act the user implied 
via the input sentence.  

Since ChatBots often don’t understand what you say, being 
able to classify the input into a discourse act would at least 
allow an appropriate neutral response. ChatScript allows 
one to write script that does this. For example, for the 

discourse act compliment (mapped from inputs like ‘I like 
you’ or ‘you are pretty’), if no other rule can be found, the 
script can fall back on a rule for the compliment act, which 
might reply ‘Thank you’. 

This was easy with Façade but hard with AIML and PF. 

DESIGN ISSUE: CONCEPTS 
Concepts are collections of words that sort of mean the 
same thing. Synonyms are an example of this. While 
synonyms are not specifically part of a theory of chat, they 
are a part of a person’s ability to understand meaning. 

Personality Forge had a notion of plug-ins, which were sets 
of words of a kind. For example, the set of all animal names 
is (animal). This meant you could write a single pattern: 

 I like (animal) 

to catch input where the user said I like elephants. This 
pattern is extremely concise and the rule represents a match 
on a higher level of meaning. You could even declare your 
own sets or reuse ones implied from a built-in dictionary. 
PF includes parts of speech as plug-ins, so you could write 
patterns to parse sentences. 

AIML only matches specific words so handling synonyms 
is extremely difficult. It requires hundreds to thousands of 
rules to handle the above pattern about animals, since 
AIML would have to have a separate rule for each animal. 

Façade’s mechanism for discourse acts meant you defined 
intermediate acts, which were synonyms. You could define 
an intermediate act {like} to be the words love, like, adore, 
admire. And then create a pattern like this: 

 I {like} you => discourse act of liking 

Their actual syntax for doing this was ugly, but it worked. 

ChatScript also allows you to declare concepts, which can 
represent synonyms or affiliated words. E.g., 

concept: ~like [adore admire love ] 

s: (I ~like you) I like you, too. 

concept: ~meat [bacon ham beef chicken] 

?: (do you like ~meat) I love meat. 

ChatScript comes with a thirteen-hundred predefined 
concepts, including the parts of speech and extensions like 
numbers, and proper-names. Topics are also concepts. 

FALL 2010 - THE LOEBNER WIN  
In 2009, the judges had only 10 minutes to sort out which 
was human and which was computer. This was raised to 25 
minutes for 2010. But we fooled a judge anyway. The 
international acclaim definitely pleased our Japanese 
company as they can now officially claim to have the 
world’s most advanced ChatBot tech in their teaching 
program. Bruce wrote another Gamasutra article[22] about 
how his engine technology worked. 



HOW TO BE A LOEBNER JUDGE 
Things to avoid – things that require no imagination: 

1. Let the ChatBot pick the topic of discussion. It will 
know lots in its chosen area. 

2. Ask simple opinion questions or who/what fact 
questions. IBM’s Watson won the TV show 
Jeopardy against top humans, demonstrating 
uncanny fact abilities. 

3. Ask yes or no questions –a 50% chance of 
guessing right. 

Things to do – anything that stresses understanding. 

1. Ask for interpretation of implied facts - How are a 
horse and a Sherman tank similar? How are 
running and walking different? 

2. Ask for actions- In your next reply, please put an x 
at the end of every word. 

3. Ask real world causality questions – What happens 
if you pour a lot of water onto a flat table? 

Just don’t think you are safe forever. These questions, too, 
will eventually fail to discriminate between human and 
machine. 

WHERE NOW? 
The win hasn’t done anything commercially for us but in 
terms of opening creative doors it has caused us some odd 
offers. We are collaborating on an Australian museum 
exhibit[23] using a robot monitor showing an animated 
head speaking with our technology. We are also consulting 
on a play about ChatBots being produced for Broadway in 
New York.  Some ad agency emailed wanting to talk to us 
about commercials for a car company but didn’t call us at 
the appointed time and didn’t communicate further. 
Someone else is interested in using ChatBots as therapy for 
schizophrenics. 

Meanwhile, since authoring every bit of a ChatBot is a lot 
of work, Bruce intends to work on making the engine able 
to read a life-story (or Wikipedia) and understand it well 
enough to automatically write script to retrieve it in pieces. 
Bruce is also planning on extending its inferencing abilities. 
Some people test the ChatBot by saying ridiculous things 
like I ate a steel girder for lunch. It would be nice to react 
appropriately to the absurd. 

We’ve explored some uses for ChatScript and have barely 
scratched the surface of the potential of our technology. It’s 
open source. What could you could do with it? 

 

REFERENCES 
1. Loebner Competition - www.loebner.net/Prizef/loebner-

prize.html 

2. Brian Christian book- www.amazon.com/Brian-
Christian/e/B004IZCXAI 

3. Avatar Reality Blue Mars - www.bluemarsonline.com/ 

4. Cleverbot – cleverbot.com/ 

5. AIML - www.alicebot.org/aiml.html 

6. Applied Minds - www.appliedminds.com/ 

7. http://www.amazon.com/Diamond-Age-Illustrated-
Primer-
Spectra/dp/0553380966/ref=sr_1_1?ie=UTF8&qid=130
3179342&sr=8-1 

8. ChatScript Open Source project - 
sourceforge.net/projects/chatscript/ 

9. Façade – www.interactivestory.net 

10. PersonalityForge –www.personalityforge.com 

11. www.gamasutra.com/view/feature/3761/beyond_aiml_c
hatbots_102.php?print=1Suzette -  
www.chatbots.org/chatbot/suzette/ 

12. Suzette -  www.chatbots.org/chatbot/suzette/ 

13. Chatterbox Challenge - www.chatterboxchallenge.com/ 

14. www.gamasutra.com/blogs/BruceWilcox/20090612/184
3/Chatbots_102__Postmortem.php 

15. Metaweb (Freebase) - www.freebase.com/ 

16. RayGun App - www.planet9.com/products_raygun.html 

17. Virtual Space Entertainment - 
www.virtualspaceentertainment.com/ 

18. Personal Digital Archiving Conference - 
www.personalarchiving.com/ 

19. www.personalarchiving.com/wp-
content/uploads/2010/02/finalpresentation-Wilcox.pdf 

20. Stanford’s Buckminster Fuller archive - www-
sul.stanford.edu/depts/spc/fuller/index.html 

21. Gordon Bell’s MyLifeBits project – 
research.microsoft.com/en-us/projects/mylifebits/ 

22. www.gamasutra.com/view/feature/6305/beyond_fa%C3
%A7ade_pattern_matching_.php 

23. Australia Powerhouse museum project - 
www.powerhousemuseum.com/

 

http://www.loebner.net/Prizef/loebner-prize.html
http://www.loebner.net/Prizef/loebner-prize.html
http://www.amazon.com/Brian-Christian/e/B004IZCXAI
http://www.amazon.com/Brian-Christian/e/B004IZCXAI
http://www.bluemarsonline.com/
http://cleverbot.com/
http://www.alicebot.org/aiml.html
http://www.appliedminds.com/
http://www.amazon.com/Diamond-Age-Illustrated-Primer-Spectra/dp/0553380966/ref=sr_1_1?ie=UTF8&qid=1303179342&sr=8-1
http://www.amazon.com/Diamond-Age-Illustrated-Primer-Spectra/dp/0553380966/ref=sr_1_1?ie=UTF8&qid=1303179342&sr=8-1
http://www.amazon.com/Diamond-Age-Illustrated-Primer-Spectra/dp/0553380966/ref=sr_1_1?ie=UTF8&qid=1303179342&sr=8-1
http://www.amazon.com/Diamond-Age-Illustrated-Primer-Spectra/dp/0553380966/ref=sr_1_1?ie=UTF8&qid=1303179342&sr=8-1
http://sourceforge.net/projects/chatscript/
http://www.interactivestory.net/
http://www.personalityforge.com/
http://www.gamasutra.com/view/feature/3761/beyond_aiml_chatbots_102.php?print=1
http://www.gamasutra.com/view/feature/3761/beyond_aiml_chatbots_102.php?print=1
http://www.chatbots.org/chatbot/suzette/
http://www.chatbots.org/chatbot/suzette/
http://www.chatterboxchallenge.com/
http://www.gamasutra.com/blogs/BruceWilcox/20090612/1843/Chatbots_102__Postmortem.php
http://www.gamasutra.com/blogs/BruceWilcox/20090612/1843/Chatbots_102__Postmortem.php
http://www.freebase.com/
http://www.planet9.com/products_raygun.html
http://www.virtualspaceentertainment.com/
http://www.personalarchiving.com/
http://www.personalarchiving.com/wp-content/uploads/2010/02/finalpresentation-Wilcox.pdf
http://www.personalarchiving.com/wp-content/uploads/2010/02/finalpresentation-Wilcox.pdf
http://www-sul.stanford.edu/depts/spc/fuller/index.html
http://www-sul.stanford.edu/depts/spc/fuller/index.html
http://research.microsoft.com/en-us/projects/mylifebits/
http://www.gamasutra.com/view/feature/6305/beyond_fa%C3%A7ade_pattern_matching_.php
http://www.gamasutra.com/view/feature/6305/beyond_fa%C3%A7ade_pattern_matching_.php
http://www.powerhousemuseum.com/

	ABSTRACT
	Keywords

	INTRODUCTION
	NOVEMBER 2007- AVATAR REALITY GESTURES
	DESIGN ISSUE:  KINDS OF CHATBOTS
	DECEMBER 2007- A YOUNG LADY’S PRIMER
	DESIGN ISSUE: CHARACTERISTICS OF CHAT
	SPRING 2008- DROPPING SOME BALLS
	DESIGN ISSUE: CHAT ENGINE OVERVIEWS
	SUMMER 2008- BACK TO THE DRAWING BOARD
	DESIGN ISSUE: PUNCTUATION & CASE
	FALL/WINTER 2008 - SUZETTE
	DESIGN ISSUE: TOPICS
	DESIGN ISSUE: REJOINDERS
	SPRING 2009 - THE EMOTION CHIP
	DESIGN ISSUE: STATED-NESS
	SUMMER 2009–CASTING ABOUT
	DESIGN ISSUE: REPEATED OUTPUT
	SUMMER/FALL 2009 - RAYGUN
	DESIGN ISSUE: GAMBITS
	WINTER 2009 - VIRTUAL SPACE ENTERTAINMENT
	DESIGN ISSUE: PRONOUNS & ELLIPSIS
	SPRING 2010- PERSONAL ARCHIVING
	DESIGN ISSUE: SHARING
	SUMMER 2010 - ENGLISH AS A SECOND LANGUAGE
	DESIGN ISSUE: DISCOURSE ACTS
	DESIGN ISSUE: CONCEPTS
	FALL 2010 - THE LOEBNER WIN
	HOW TO BE A LOEBNER JUDGE
	WHERE NOW?
	REFERENCES

