
 1

ChatScript User’s Manual 
©  Bruce Wilcox, gowilcox@gmail.com 

Revision 6-11-2011 
 
 

 
Table of Contents 

 
 
 

Overview    2  
 
Simple Topics    8 
Simple Patterns   11 
Simple Output   19 
Simple Debugging   20 
Variables    23 
 
Advanced Topics   28 
Advanced Patterns    31 
Advanced Output    34 
Advanced Debugging  43 
Simple Facts    46 
Advanced Facts   51 
Esoteric Facts   52 
 
Pos-tagging and pseudo-parsing 54 
 
Editing Non-topic Files  61 
Server /LINUX   64 
Which Bot?    66 
 
Common Script Idioms  67 
Questions/Hand-holding  69 
Esoterica and Fine Detail  70 
AutoGeneration of Responders 73 
A Fresh build    74 

mailto:gowilcox@gmail.com


 2

OVERVIEW 
 

ChatScript is a scripting language designed to accept user text input and generate a text 
response.  Chat proceeds in volleys, like tennis. The program inputs one or more 
sentences from the user and outputs one or more sentences back.  
 
Rules:  Fundamentally a script is a series of rules. A full rule has a kind, a label, a 
pattern, and an output.  Here is a simple full rule: 
 ?:  MEAT (you like meat)  I do. 
The rule kind is ?:, which means it only reacts to questions. The label is MEAT. The 
pattern is in () and looks to find the words you like meat in consecutive order, anywhere 
in the input, e.g. do you like meat. The output is I do. 
 
The kind restricts when the rule can be tried. You can restrict rules to statement inputs, 
question inputs, or only when the bot takes control of the conversation and wants to 
volunteer something (gambits). Kinds are a letter follow by a colon. 
 
The label is optional and is partly a documentation and debugging aid and allows this rule 
to be manipulated by other rules. 
 
A pattern is a set of more specific conditions which allow or disallow this rule, usually 
trying to match words of the current input sentence, but sometimes taking into account 
the prior history of the conversation, the time of day, or whatever. 
 
The output is what this rule does if allowed to execute. Since the goal of the overall 
system is to generate a response, the simplest output is merely the words to say. More 
complex outputs can do conditional execution, loops, function calls, etc. 
 
The system normally executes rules in a specified order until one not only passes the kind 
and pattern restrictions, but also actually generates output destined to reach the user.  
 
Once one has output, the system is done (unless you explicitly want to do more). 
 
Topics:  Rules are bundled into collections called topics.  You tell the system to execute a 
topic, and it begins executing rules in that topic until it generates an output.  Topics can 
invoke other topics. Exactly how to process an input is controlled by a control script 
which itself is merely a topic. It generally calls engine functions and conditionally 
executes other topics.  
 
Whitespace: ChatScript generally ignores excessive whitespace. You can have a plethora 
of tabs, spaces, and newlines. But, you do have to use whitespace to separate tokens.  
 
Case: ChatScript is case insensitive for code script. Obviously case is important in literal 
output. And normally words in patterns should be lower case unless they are proper 
names, but the system can manage that if you do it wrong. 
 



 3

Comments:  the comment character is the hash mark. It extends to the end of the line. 
 s: (I hate meat)  So do I.  # an untruth 



 4

Hello Word 
 
Let’s turn to running the system in a simple demo. 

1. Download and extract on a windows system into a directory (mine is called 
ChatScript), keeping files in their respective folders. 

2. Double click on the chatscript.exe file. The system prints out a bunch of statistics 
as it loads data. After which is says: “Enter user name”. 

- if you are on LINUX, run LinuxChatScript with argument “local”  
3. Select a user name. It’s arbitrary, but it’s how the system knows you are you 
when you start up again later. The system will respond with a Welcome to 
ChatScript message. 

4. Now enter: What is your name? – you get My name is Harry if you type this 
correctly. You can also ask How was your childhood? and what are you afraid of 
and what is your history 

OK. Now you’ve run what comes pre-installed. Let’s quickly survey what comes built in. 
 
Simple Editing the Script 

 
To change the script, use some word editor (WORD, notepad, whatever) and open up 
RAWDATA/simpleTopic.top.  In it find the line at the bottom that says My name is 
Harry and change it to My name is Rachel.  Then, while running the ChatScript engine,  
(having provided a user name), enter :build 1. This rebuilds the simple script and 
reinitates a conversation. You can then type in What is your name? and get back your 
new answer. The system still considers the persona running to be labeled Harry, but that’s 
just its internal label. 
 
If you want to create new topics, you should read the Simple Topics documentation. In 
RAWDATA/skeleton.top there are a whole slew of predefined topic declarations with 
keywords. You can either add this file name into your files1.txt  and then edit some topic 
or copy a specific topic into some other file and reference that from files1.txt (including 
the already referenced simpleTopic.top file).  
 
Simple Modification 

 
OK. Let’s look at actually changing the system.  
 
In the RAWDATA folder are two top-level files. simpleControl.top is your control script. 
simpleTopic.top contains your main script for things you want the bot to say. These two 
files are listed in the top level file files1.txt .  
 
When you make changes to one of these .top files, you compile them by typing :build 1 
to the chatbot. This replaces some content in the TOPIC directory (and maybe the 
VERIFY directory) and reloads all files so you can immediately try out your changes. 
Because you can have a lot of files and data, the system actually supports two stages of 
building data. Things that you don’t expect to change often should be in files listed in 



 5

files0.txt and are rebuilt using :build 0. Things you are actively changing a lot should go 
into files of files1.txt and get rebuilt with :build 1. 
 
Fast Overview of SimpleTopic.top file 
 
Chatscript is so easy, a child could master it in seconds. And if you believe that, I have 
several bridges available for sale to you on special.  But some people will try to dive right 
in, without reading the material, so here is a quick guide to what you see in this simple 
topic file.  
 
Rules start with t: or ?: or u: or s:    

s: means the rule reacts to statements.    
?: means the rule reacts to questions.  
u: means the rule reacts to the union of both.   
t: means the rule offers a topic gambit when chatbot has control 

 
Rules also start with a: b: etc, but those are "rejoinders", not top level. They are used to 
anticipate how a user might respond to output and give direct feedback based on that 
response. 
 
Rules are thus classified as:  
 
Responders (s: ?: u: ) which are rules that try to react to unprovoked input from the user. 
That is, he might out of the blue ask you something or say something, and these attempt 
to cope with that.   
 
Rejoinders (a: b: … q: ) are attempts to predict a user’s immediate response to something 
the chatbot says. They cannot be triggered except on input immediately after the rule they 
follow has issued output.  
 
Gambits (t: ) are the story the chatbot wants to tell on a subject or the conversation the 
chatbot is trying to steer the user into. 
 
Rules usually have pattern requirements in parens (except t: rules for which a pattern is 
optional). These typically try to find specific words or sequences of words in the user’s 
input. In the rule: 

u: (run away)  
the engine will see if the word run can be found anywhere in the sentence, and if so, is it 
immediately followed by the word away.  
 
Whenever you see [ …]  it means pick one of. So  

u: ([scare afraid])  
means find anywhere in the sentence one of the words scare or afraid. And scare can be 
in any of its related  forms: scared, scare, scaring, scares. 
 



 6

In the sample file you will see ordinary words and ~words.  Tilde words refer to a 
concept set of words, a list of words that approximates the ~word. E.g., ~like means any 
of a number of words that mean to like something. ~animals means any of a large list of 
names of animals.  These are shareable shorthand for the [ ] notation. Instead of having to 
write [elephant tiger leopard alligator crocodile lion ….] in lots of rules, with the 
appropriate concept defined one can merely say ~animals 
 
Rules are always bundled into topics, like the topic: ~childhood topic. Topics have a list 
of relevant keywords following the topic name. After that, the gambits, t: lines are always 
the first rules in a topic. They offer a story or expected conversation flow. If you ask 
information in a conversation, you are expected to balance the scales by giving 
information. For example if you ask what someone does for a hobby, you are expected 
after their response to answer the question about yourself. As in: 
 Topic: school [school university learn] 

t: Where do you go to school? 
t: I go to Harvard? 
t: What is your major? 
t: I am studying finance. 

 
Of course one is often expected to respond to the user’s response. So if he answers 
“where do you go to school” by saying “the university of Rochester”, it helps if you can 
make some cogent rejoinder on that BEFORE you gambit say “I go to Harvard”. 
 
And your topic has to be ready to handle arbitrary school-related questions from the user. 
If he says “I go to Yale. What was your school mascot?”, you’d like to have added 
responders that could field the mascot question before you move on to volunteering you 
went to Harvard. 
 
This is what the simple topic on childhood attempts to do. Ask gambit questions, respond 
with appropriate remarks to their response, offer the chatbot’s answer to the gambit, 
move on, and handle some simple questions asked out of the blue on the topic. 
 
Comments start with # . In the file, the comment  # issued only once, is an ordinary 
comment. 
 
Special comments #! give sample input from a user that the immediately following rule is 
expected to match and handle. This both documents what input is expected to match the 
rule below AND allows the engine to automatically test it. The special comment gives 
only 1 example of matching input, not all possible inputs that can match. They help you 
understand what a responder or rejoinder is supposed to react to. They have no impact 
whatsoever on a user in chat. 
 



 7

Overview of the control script 
 
The typical flow of control is for the control script to try to invoke a pending rejoinder. 
This allows the system to directly test rules related to its last output, rules that anticipate 
how the user will respond. Unlike responders and gambits, the engine will keep trying 
rejoinders below a rule until the pattern of one matches and the output doesn’t fail.  Not 
failing does not require that it generate user output. Merely that it doesn’t return a fail 
code. Whereas responders and gambits are tried until user output is generated (or you run 
out of them in a topic). 
 
If no output is generated from rejoinders, the system would test responders. First in the 
current topic, to see if the current topic can be continued directly. If that fails to generate 
output, the system would check other topics whose keywords match the input to see if 
they have responders that match.  If that fails, the system would call topics explicitly 
named which do not involve keywords. These are generic topics you might have set up.  
 
If finding a responder fails, the system would try to issue a gambit. First,  from a topic 
with matching keywords. If that fails, the system would try to issue a gambit from the 
current topic. If that fails, the system would generate a random gambit. 
 
Once you find an output, the work of the system is nominally done. It records what rule 
generated the output, so it can see rejoinders attached to it on next input. And it records 
the current topic, so that will be biased for responding to the next input. And then the 
system is done. The next input starts the process of trying to find appropriate rules anew. 
 
There are actually three control scripts (or one invoked multiple ways). The first is the 
preprocess, called before any user sentences are analyzed. The main script is invoked for 
each input sentence. The postprocess is invoked after all user input is complete. It allows 
you to examine what was generated (but not to generate new output). 
 
What’s Where Overview 
 
The ChatScript engine can run multiple bots at once, each with a unique persona. So one 
user can connect and talk with a specific personality while another user connects and 
talks with a different one (or the same one). 
 
History Files: Each user’s conversation is tracked by the system and kept in files in the 
USERS directory. A user can return to chat with a personality days later, and the system 
knows what has happened in previous conversations and that this is the start of a new 
conversation.  The system keeps a log file per user recording their conversations for the 
author, and a topic file for each user-chatbot pairing, where it stores the current state of 
conversation for the engine. If the script records facts about the user during conversation, 
these are stored in a facts file, one per user, to be read in again by the engine. 
 
Dictionary Files: The DICT folder is the underlying dictionary of the system. You 
probably won’t modify it. 



 8

 
Dictionary Extension Files: The LIVEDATA folder contains extensions to the 
dictionary and runtime system that you might change as an advanced author.  
 
Knowledge Files: The RAWDATA folder is where raw data to support chat is kept 
(though you can keep it anywhere since it’s not compiled into the engine). That data is 
run through the script “compiler” and the output is stored in the TOPIC directory, which 
holds your compiled script data. If your script has verification data embedded in it, which 
allows the system to prove your patterns actually do what you intend, that data is stored 
in the VERIFY directory after compilation. 
 
Source Files: src is source for rebuilding the engine. It has a file dictionarySystem.h 
which is read during loading to define engine constants that can be used in scripting. 
 
Documentation Files: This document and others can be found in DOCUMENTATION. 
 
Compilation Files: The folders LINUX, VS2008, and VS2010 are for rebuilding the 
executable. LOEBNERVS2008 and LOEBNERVS2010 build a Loebner version. 
 
Top Level Files:  Aside from the chatscript.exe, the following top level files exist: 

authorizedIP.txt –as a server, this allows some users to enter commands 
 files0.txt & files1.txt – what data files to compile with :build 0 and :build 1 
 server.bat – run the engine as a windows server 
 LinuxChatScript – Linux executable engine (defaults to server mode) 
 loebner.exe- engine compatible with Loebner competition protocol 
 changes.txt – list of changes between releases 
 LocalClient.bat – file to run engine as a client on same machine as server 

 



 9

SIMPLE TOPICS 
 
The system does not execute all rules. Nor do you directly choose a rule to execute. 
Instead, the author organizes collections of rules into topics and chooses what topic to 
execute at any moment. It, in turn, executes its rules. Here is an example of a simple topic 
declaration. 

topic: ~DEATH [dead corpse death die body] 
t: I don’t want to die 
?: (When will you die) I don’t know. 

 
The topic declares its name, its keywords, and then its rules.  It ends with the end of the 
file or a new top level declaration (which includes topic:, concept:, table:,  outputmacro:, 
patternmacro: ). A topic name must start with a ~ . 
 
Keywords 
 
Keywords allow the system to consider this topic based on consanguinity with the input 
sentence. User sentence keywords trigger the closest matching topic (based on number 
and length of keywords) for evaluation. If the engine can find a matching responder, then 
it shifts to that topic and replies. Otherwise the engine tries other matching topics. 
Eventually, if it can’t find an appropriate responder, it can go back to the most relevant 
topic and just dish out a gambit (the t: rule). 
 
It doesn’t matter if the new topic has responders that overlap some other topic’s 
responders (both could match the input). You can have a topic on ~burial_customs and 
another on ~death. An input sentence I don’t believe in death might route you to either 
topic, but that’s reasonable.   
 
Topics make it easy to bundle rules logically together. Topic keywords mean the author 
can script an independent area of conversation without regard to pre-existing script and 
the system will automatically find it and invoke it as appropriate.  
 
Topics do not have to have keywords. Catch-all topics can be created for various 
purposes which have no keywords – they have the parens but no words within. 

 
Gambit Rules 
 
A topic introduces an additional rule type. In addition to responders for user input (s: ?: 
u:) it has topic gambits it can offer (t:). Gambits create a coherent story on the topic if the 
bot is in control of the conversation. Yet if the user asks questions, the system can use a 
responder to either respond directly or use up a gambit it was going to volunteer anyway. 
All gambit rules must precede all responders. It is entirely up to you the order of 
responders after the gambits. You can segregate s: from ?: from u: or co-mingle them. 
 



 10

The typical gambit does not have a label or a pattern component. It could have them. It 
just usually is the rule type and the output data.  
 
Execution Order 
 
A topic is executed in either gambit mode (meaning t: lines fire) or in responder mode 
(meaning s:  ?: and u: fire).  Rules are placed in the order you want them to be tried. For 
gambits, the order tells a story. For responders, rules are usually ordered most specific to 
least specific, possibly bunched by subtopic. So a responder trying to catch what color is 
your hair would be before one that simply would react to any reference to your hair. 
 
By default, the system avoids repeating itself, marking as used-up rules that it matches 
that generate output. This is how a topic story gets told. It outputs the first gambit, marks 
it used, and then next time it will output the second gambit and mark it used, and so on. 
 
The file RAWDATA/skeleton.top has a bunch of topics already predefined with 
keywords but no responders or gambits. If you filled in some of these topics with rules 
and hooked the file into files1.txt and rebuilt the data, you’d have a chatbot. 
 
Rejoinders 

If you expect the user might respond in a particular manner to the chatbot’s last output, 
you can script rules to examine his next input and see if it matches. When it works, it 
makes your chatbot seem like it understands the user. These are called rejoinder rules and 
all rules can have them. 
 
 s: ( I like spinach ) Are you a fan of the Popeye cartoons? 
  a: ( yes ) I used to watch him as a child. Did you lust after Olive Oyl? 
   b: ( no ) Me neither. She was too skinny. 
   b: ( yes ) You probably like skinny models. 
  a: ( no )  What cartoons do you watch? 
   b: ( none ) You lead a deprived life. 
   b: ( Mickey Mouse ) The Disney icon.  
 
Rejoinders use a: through q: to indicate nesting depth. All rejoinders at a level have the 
same letter and are alternatives that will be tested in order. So, after the chatbot asks are 
you a fan… it will test the next input for yes and then no. As soon as it finds a matching 
rejoinder, it will execute it and be done. If it finds none, then the system just moves on to 
its normal behavior. Rejoinders can have rejoinders, as shown above.  Indenting like 
above is good style, making it visually obvious in your script. 
 
Note—technically the above uses of yes and no will not actually work as written. They 
are considered special and treated as interjections (along with many other things that 
mean the same thing). To make the above example actually work in the engine, you’d 
have to use ~yes and ~no.  But you don’t learn about concepts and interjections until 
later. 
 



 11

Rule Labels 
 
All rules (responders, gambits, rejoinders) can have labels on them. Labels have a variety 
of uses. Other rules can use functions that target a particular labeled rule. You can use the 
debug abilities to test that rule and you can see that rule more easily in a trace. And you 
get a kind of documentation telling you what your rule is about.  A label is a single word 
placed between the rule type and the pattern. If the rule is a gambit, you must add a 
pattern, even if it is only empty parens.  
 t: MY_EYES ()  My eyes are blue 

?: EYECOLOR  (color * eyes) I have blue eyes 
u: GLASSES ([glasses contacts]) I don't wear glasses, but I do have contacts. 
?: BLIND (you * blind) I am not blind. 
?: COLORBLIND  (you * [color-blind "color blind"])  I am not color blind. 

 
 
The simpletopic.top file has an example topic called ~Childhood of normal complexity 

(which can be understood after reading through advanced output).



 12

SIMPLE PATTERNS 
 
As stated previously, a rule cannot fire unless its pattern matches, and a pattern in a rule 
is encased in parens (which means find the items within it in sequence).  
 
Writing patterns is a delicate balancing act. If you are too specific, the pattern will miss 
all sorts of opportunities to respond to similar meanings. If your pattern is  

?: (when will you go home) I go home tomorrow 
and the input is when will you be going home, the bot fails to react. But if your pattern is 
too broad, the bot responds to completely wrong meanings.  If your pattern is  

s: (home) I go home tomorrow. 
then it reacts to He slid home inappropriately. 
 
The goal, usually, is to write a pattern that matches a particular meaning. Before you can 
perform the balancing act, you need to see what things can be in a pattern.  
 
In sequence  ( )   
 
I said that parens mean in sequence, anywhere in the input. Thus 
 s: ( I love you) Do you really? 
matches How I love you! and I love you and your kind and Everyone knows I love you. 
 
You can even nest parens within parens, not that it has any functional utility. 
 s: (I (love you))  Do you really? 
This pattern is equivalent to the earlier one without nested parens.  Whereas the outer 
parens can start their first element matching anywhere in the sentence, once a positional 
context has been established, that gets inherited. Thus after I is matched, the starting 
context of the inner opening paren is that the next element must match in position 2 in the 
sentence, immediately after I. 
 
Another way to request a sequence is to put double quotes around it. They must be 
normal ascii double-quotes, not Word’s fancy left and right double quotes. 
 s: ( “I love you” ) Do you really? 
There are two reasons to use double quoting. First, if you are trying to shoe-horn a phrase 
into a place that expects a word.  For example, as a topic keyword you could do this: 
 topic: ~death [“to die” “cross over”] 
Second, when trying to write words where you are not sure how the system will tokenize 
it and whether it is one word or a sequence of words. Tokenization involving punctuation 
can be tricky. For example, the word Bob’s is actually tokenized as two words: Bob ‘s . 
And in Wordnet, New_Year's_Eve is a single word. You might not know that, but 
anytime you think of something as multiple words, you are safe quoting it (writing ”New 
Year’s Eve” ) and letting ChatScript manage how it is stored internally. This is 
particularly true of names of people, titles of books and other multiple-word proper 
names. Put things with punctuation in them in double quotes to be safe. 
 
 



 13

 
 
Sentence boundaries < and > 
 
Sometimes, to get a proper meaning in the pattern, you need to actually know where an 
input begins or ends. For example: 
 u: (what is an elephant) An elephant is a pachyderm. 
matches Tell me what is an elephant and what is an elephant and what is an elephant 
doing in the room. That last one is inappropriately matched. 
 
The > matches the end of the sentence. This makes it possible to correctly manage the 
above sentences as follows: 
 u: (what is an elephant > ) An elephant is a pachyderm. 
 
The < doesn’t really match the start of the sentence so much as it sets the current position 
of matching to the start of the sentence. Thus 
 u: ( roses < I like ) I like roses too. 
matches I like roses because it finds roses anywhere in the sentence, then the < resets the 
match position to the sentence start, and then it finds I like at the beginning. Of course 
this will not match  You know I like roses because I is not at the start of the sentence. 
 
Simple Indefinite Wildcards * 
 
The wildcard * means 0 or more words in sequence. It can be used to widen a pattern: 
 ?: (when * you * home) I go home tomorrow 
This pattern responds to When will you go home and When Roger is with you, will there 
be anyone at home? 
 
Precise Wildcards *1 … 
 
As you may notice, indefinite wildcards can allow all sorts of mischief to creep into a 
match. An overprotective way to manage this is using wildcards that tell you exactly how 
many words can be swallowed up. The * followed by a number names how many words 
it absorbs. 
 ?: (when *1 you *1 home) I went home yesterday 
This matches When did you go home but won’t accept wide variances like When Roger is 
with you…nor will it accept when you went home which hasn’t room for the first *1. 
 
Range-restricted Wildcards *~1 … 
 
The usual way to manage the excesses of the previous wildcards is to use a range-
restricted wildcard. This is an * followed by a ~ and a number, like *~3.  It means from 0 
up through that number, or approximately that number. A common choice is *~2. This 
leaves room for some filler words (like a determiner and an adjective or perhaps some 
kind of adverb), without requiring them or letting the sentence stray.  
 ?: (you *~2 go *~2 home) I often go to that home. 



 14

This responds equally to You can go home and you should not go to your home. 
 
Unordered Matching  <<  >> 

Often times you are interested in matching several keywords, but you explicitly want any 
order of them. For example the sentence I love birds is a lot like Birds are what I love but 
subject and object move around.  One somewhat tedious way to match in any order is: 

s: ( I < * love < * birds ) I love birds too. 

This works by going back to the beginning of the sentence and allowing any number of 
words to match a wildcard until the next keyword is found.  It’s ugly.  The cleaner way is 
to use the unordered markers. 

s: ( << I birds love >> ) I love birds too. 

Choices [ ] 
 
You can match alternate words in the same position by placing those choices in brackets. 
 ?: (you [swim ride fish ]) I do. 
This matches Do you swim and Do you fish and do you ride. 
 
Choices may be significant alternatives or they can be synonyms. 
 ?: (you [eat ingest “binge and purge” (feed my face ) ] *~2 meat) I love meat 
 
Notice that elements of a choice can be sequences of words either as double-quoted 
phrases or as paren sequences. 
 
~Concepts 
 
Choices are handy for synonyms, but you have to repeat them over and over in different 
rules. At such point being able to declare a list of choices in one place and use them 
everywhere else becomes convenient.  This is the concept set. It is hugely important in 
writing patterns that match meaning. 
 concept: ~eat [eat ingest “binge and purge”] 
Unlike choices, a concept cannot use paren notation to hold a sequence of words, though 
it can use quoted expressions. 
 
A concept is a top-level declaration consisting of a name starting with ~ and a list of 
words.  You can use the set name in any pattern or topic keyword list in place of a word. 
 s: (I  ~eat meat) Do you really? I am a vegan. 
Think of the ~ as meaning approximately. Topic names are also concept names, with the 
keywords of the topic being the choices. 
 
ChatScript can represent word synonyms as above or affiliated words as below. 

concept: ~baseball [strike umpire ball bat base ] 
… some topic declaration 

 s: (~baseball) I’m not that into sports like baseball. 
 



 15

A concept can also a natural ordering of words that an advanced script can use. The 
ordered concept below shows the start of hand ordering in poker.   

concept: ~pokerhand [ royal flush straight flush 4 of a kind full house  ] 
The pattern: 
 ?: ( which *  better *  ~pokerhand *  or  *  ~pokerhand )   … 
detects questions like which is better, a full house or a royal flush  and the system has 
functions that can exploit the ordered concept to provide a correct answer. 
 
You can nest concepts within concepts, so this is fine: 
 concept: ~food [~meat  ~dessert  lasagna ~vegetables ~fruit ] 
 
Hierarchical inheritance is important in pattern generalization. Concepts can be used to 
create full ontologies of verbs, nouns, adjectives, and adverbs, allowing one to match 
general or idiomatic meanings.  The system comes with such already defined, you just 
have to activate it. If you give the command :build 0 to the chatbot, you will build the 
underlying ontology and world knowledge of the system.  Then you can explore the 
existing sets.   
 
In addition to fixed sets (over 1300 of them), the system automatically defines a bunch of 
dictionary-based sets. These include: 
 parts-of-speech like ~noun  (see POS-Tagging) 
 ~number and ~placenumber (like 1st, second) 
 ~propername, ~malename, ~femalename, ~humanname, ~firstname 
 ~childword,  ~adultword, ~unknownword 
 ~timeword (refers to time), ~locationword (refers to a place), ~url 
 
In ChatScript, WordNet ontologies are invoked by naming the word, a ~, and the index of 
the meaning you want.  
 concept: ~buildings [ shelter~1 living_accomodations~1 building~3 ] 
The concept ~buildings represents 760 general and specific building words found in the 
WordNet dictionary – any word which is a child of: definition 1 of shelter, definition 1 of 
accommodations, or definition 3 of building in WordNet’s ontology.  How would you be 
able to figure out creating this?  This is described under :up  in  Word Commands later. 
 
Similarly you can invoke parts of speech classes on words. By default you get all of 
them. If you write: concept: ~beings [snake mother ] 
then a sentence like I like mothering my baby would trigger this concept, as would He 
snaked his way through the grass.  But the engine has a dictionary and a part-of-speech 
tagger, so it often knows what part of speech a word in the sentence is. You can use that 
to help prevent false matches to concepts by adding ~n ~v ~a or ~b (adverb) after a word.  
 concept: ~beings [snake~n mother~n] 
If the system isn’t sure something is only a noun, it would let the verb match still. Thus a 
user single-word reply of snakes would be considered both noun and verb. 
 
 
 



 16

Interjections, “discourse acts”, and concept sets 
 
Some words and phrases have interpretations based on whether they are at sentence start 
or not. E.g., good day, mate and It is a good day are different for “good day”. Likewise 
sure and I am sure are different. Words that have a different meaning at the start of a 
sentence are commonly called interjections. In ChatScript these are defined by the 
livedata/subtitutes.txt file. In addition, the file augments this concept with “discourse 
acts”, phrases that are like an interjection. All interjections and discourse acts map to 
concept sets, which come thru as the user input instead of what they wrote. For example 
yes and sure and of course are all treated as meaning the discourse act of agreement in the 
substitutes file. So you don’t see yes, I will go coming out of the engine. The substitutes 
file will remap that to the sentene ~yes, breaking off that into its own sentence, followed 
by I will go as a new sentence. 
 
These generic interjections (which are open to author control via substitutes.txt) are:  
  ~yes,~no,~emogoodbye,~emohowzit,~emolaugh,~emomisunderstand 
 ~emosad,~emohappy,~emosurprise,~emobored, ~emopain, 
 ~emohello,~emoapology,~emoskeptic,~emocurse,~emoignorance, 
 ~emothanks,~emodisgust,~emoprotest,~emobeg 
 
If you use a word in a pattern which may get remapped on input, the script compiler will 
issue a warning. Likely you should use the remapped name instead. 
 
The following concepts are triggered by exactly repeating either the chatbot or oneself (to 
a repeat count of how often repeated). Repeats are within a recency window of about 20. 
 
"~repeatme","~repeatinput1","~repeatinput2","~repeatinput3","~repeatinput4","~repe
atinput5","~repeatinput6", 
 
 
 
Canonization 
 
The system actually assists you in generalizing your patterns. It simultaneously matches 
both the original word and a canonical form of it if your pattern word is in the 
canonical form. And it checks both lowercase and uppercase forms of your words. 
 
For nouns, the canonical form is the singular. So if your pattern is: 
 ?: (dog)  I have a cat 
this will respond equally to I like dogs and I have a dog.  Whereas the pattern 
 ?: (dogs) I have a cat 
will only respond to I like dogs but not to I have a dog. 
 
For verbs, the canonical form is the infinitive tense. If your pattern is: 
 ?: (be *1 correct) Yes. 
This will respond equally to Was it correct? and Are you correct? and Is she correct?. 
 



 17

Possessive suffixes ‘ and ‘s transform to the word ‘s. Adjectives and adverbs revert to 
their base form. Determiners a an the some these those that become a. Text numbers like 
two thousand and twenty one transcribe into digit format and floating point numbers 
migrate to integers if they match value exactly. Personal pronouns like me, my, myself, 
mine move to the subject form I, while whom, whomever, whoever shift to who and 
anyone somebody anybody become someone. The file canonical.txt in LIVEDATA 
controls lots of these. 
 
If the system sees & in the input, it changes it to and.  It also changes ` to ‘ . 
 
ChatScript’s simple concept below accepts all tenses and conjugations of the listed verbs: 
 concept: ~be [ be seem sound look ] 
 
If you put an apostrophe in front of a word or use words not in canonical form, the 
system will restrict itself to what you used in the pattern:  
 u: ( I 'like you )   This matches I like you but not I liked you. 
 s: ( I was  )     This matches I was and Me was but not I am 
 
Not ! 
 
The absence of words is represented using ! and means it must not be found anywhere 
after the current match location. When placed at the start of the pattern, it means not 
anywhere in the sentence at all : 
 u: ( ![ not never rarely ]  I * ~ingest * ~meat )  You eat meat. 
 u: ( !~negativeWords  I * ~like *  ~meat )   You like meat. 
 
Optional Words  { } 
 
Sometimes you can expect a word might or might not be supplied. Your pattern can 
reflect this, swallowed it when present. {} is just like choice [], except the match is 
optional. It is allowed to fail. 
 ?: (how hot is ~number {degree deg} Farenheit)  Sounds hot. 
 s: ( define {the word (the meaning of) } *1 > )  Sorry. I don’t know it. 
Note how we didn’t have to say degrees in the optional list, because that automatically is 
handled by using the canonical degree. 
 
Word Commands  
 
You can issue commands to the system (prefix is colon) to inquire about words and their 
relationship to themselves and concepts. All commands are invisible to normal chat in 
that they do no affect the user’s state of processing chat (except :real) , though some 
commands can change engine variables, which affect how the engine may process future 
input. 
 
:word word – dumps the dictionary and fact and concept information about the word. 



 18

It displays everything the system knows about the given word- its parts of speech, 
attributes like it is a singular noun, what dictionary meanings it has, and what sets and 
facts it participates in directly. Just type in something like :word tennis 
 
:up word - While this is interesting, for the purpose of matching, the :up command is 
more useful, because it tells you how this word participates in sets all the way up the 
inheritance hierarchy both of concepts and of Wordnet, so any set listed by this would be 
recognized if the word given as argument is used.  
 
Suppose you are creating the concept of ~buildings. Just think of a word you want to 
include, like temple, and then use :up temple to see what it does.  
 
For temple: 
  Set hierarchy: 
  Wordnet hierarchy: 
  temple~1:N    means tabernacle~1 the place of worship for a Jewish congregation 
    is house_of_worship~1 any building where congregations gather for prayer 
       is building~3  
          is construction~4  
             is artefact~1  
                is whole~1  
                   is physical_object~1  
                      is physical_entity~1  
                         is entity~1  
  temple~2:N   means temple~2 place of worship consisting of an edifice for worship of a deity 
    is house_of_worship~1 any building where congregations gather for prayer 
       is building~3  
          is construction~4  
             is artefact~1  
                is whole~1  
                   is physical_object~1  
                      is physical_entity~1  
                         is entity~1  
  temple~3:N    means temple~3 an edifice devoted to special or exalted purposes 
    is building~3 a structure that has a roof and walls and stands permanently in one place 
       is construction~4  
          is artefact~1  
             is whole~1  
                is physical_object~1  
                   is physical_entity~1  
                      is entity~1  
  temple~4:N    means temple~4 the flat area on either side of the forehead 
    is lineament~1 the characteristic parts of a  face: eyes and nose and mouth and chin 
       is body_part~1  
          is piece~11  
             is thing~1  
                is physical_entity~1  
                   is entity~1  
 
If we are trying to build a concept of buildings, then temple~1, temple~2, and temple~3 
are definitions that make sense (:N just names the part of speech). But notice on the up 
path that those definitions all come from building~3, and that using that would make 
sense and encompass everything that Wordnet considered a building in that sense. 



 19

 
:down word limit – takes a word and chases down its hierarchy showing what inherits 
from it. Limit is how many levels down to go (default is 2) since going down can expand 
into a lot of choices for some words. If the word is a concept or topic name, it displays its 
top level members. 
 
 



 20

SIMPLE OUTPUT 
 

The goal of the engine is to generate output to display to a user. When a rule does that, it 
has accomplished the goal of the topic.   
 
Direct Output 
 
To generate simple output, just put the text you want to display after the pattern 
component of a rule. Gambits do not have to have a pattern component, in which case 
their output starts immediately. 
 t: This is output for the user. 
 ?: ( hello )   How are you? Do you have a life? Are you going to die soon? 
 
The system automatically manages spacing separators between words and punctuation, so 
I like you? and I like you  ?  print the same on output 
 
AutoFormat 
 
You pass words and punctuation for display. The system automatically formats it, so it 
doesn’t matter if your commas and periods have spaces before them, or how many blanks 
or tabs there are between words. The system reformats it automatically. If you actually 
need to control blanks…  
 
Formatted double quotes 
 
Programming languages allow you to control your output with format strings. In the case 
of ChatScript, the functional string  ^”xxx” string is a format string. The system will 
remove the ^ and the quotes and put it out exactly as you have it, except, it will substitute 
variables (which you learn about shortly) with their values. So 
 t: ^“I        like you.” 
puts out  I        like you. 
 
Literal Output \ 
 
To output characters that have reserved meaning to the engine, like [ and ], you need to 
put a backslash in front of them. In particular, to force a newline you use \n.  
 
Randomized Output [] 
 
You can select among a range of choices by using output choices. Each choice is encased 
in [], and a contiguous set of them form a zone that the system will pick randomly 
among.  Whenever bracketed items are discontiguous, you get a new random zone. 
 ?: (hi) [hello.][hi][hey]  Are you going to [dance][swim][eat] anytime soon? 
The above has two random zones, separated by fixed text. So it might output hello. Are 
you going to dance anytime soon? or hey Are you going to eat anytime soon? 
 



 21

 
SIMPLE DEBUGGING 

 
You’ve written script. It doesn’t work. Now what? Now you need to debug it, fix it, and 
recompile it. Debugging is mostly a matter of tracing what the system does and finding 
out where it doesn’t do what you expected.  Debugging mostly done by issuing 
commands to the engine, as opposed to chatting.   
 
If the system detects bugs during execution, they go into TMP/bugs.txt  
You can erase the entire contents of theTMP directory any time you want to.  
 
:build xxx– reads and executes filesxxx.txt to rebuild some of the TOPIC data. 0 is the 
underlying layer (files0.txt) which depends only on the dictionary. The top layer can 
depend on that underlying layer. Any file can be used for the top layer, meaning you can 
build different bots for testing easily. You can do :build ben (filesben.txt)  , try it out, then 
:build Sharon (filessharon.txt), etc. While a build is in progress, the log file changes to be 
USERS/build%s_log.txt where %s is the name you gave to the build command. If you 
got errors, search for ** within it.  If you get errors from build that claim something is 
already defined and you know it isn’t, you can always erase the contents of the TOPIC 
directory (keeping the directory) and build anew. 
 
:build will spell check patterns, issuing warnings on items it finds dubious. You can 
suppress this with an optional second argument nospell, e.g., :build 1 nospell. You can 
augment this to cover output as well, by saying :build 1 output, though you may well get 
a bunch of false positives because you use slang, or from variable assignments, or 
whatever. 
 
:trace all   -  this is the most widely used debug command and enables global tracing. 
After entering this, you type in your chat and watch what happens (which also gets 
dumped into the current log file). Problem is, it’s potentially a large trace. You really 
want to be more focused in your endeavor.  
 
:trace none – turns off global tracing 
 
:trace ~education  -  this enables tracing for this topic and all the topics it calls. Call it 
again to restore to normal. 
 
:trace !~education  -  this disables current tracing for this topic and all the topics it calls 
when :trace all is running. Call it again to restore to normal. 
 
:trace ~education.school – this traces all top-level rules in ~education that you named 
school (and its rejoinders and anything it calls. Call it again to turn off the trace. 
 
You can also put traces in places to watch builds (you learn about these later). 
 



 22

You can insert a trace command in the data of a table declaration, to trace a table being 
built (the log file will be from the build in progress). E.g.,  

table: ~capital (^base ^city) 
_9 = join(^city , _ ^base) 
^createfact(_9 member ~capital) 
DATA: 
:trace all 
Utah Salt_lake_city  
:trace  none 

 
You can insert a trace in the list of files to process for a build. From files1.txt 
 RAWDATA/simplecontrol.top  # conversational control 
 :trace all 

RAWDATA/simpletopic.top  # things we can chat about 
:trace none 

  
And you can insert a trace in the list of commands of a topic file: 
 Topic: foo […] 
 ….. 
 :trace all 
  
 
:variables – show the values of all user variables. 
 
:prepare sentence -  This shows you how the system will tokenize a sentence and what 
concepts it matches. It’s what it normally does to prepare to match topics against your 
input. You can supply :prepare true to make to the system do this on future sentences 
and then :prepare none to turn this off. 
 
:postprocess sentence -  This shows you how the system will tokenize your sentences as 
though they were output from the chatbot and runs the postprocess. 
 
:revert – The stand-alone engine maintains a one-volley back copy of user files in /TMP. 
If the chatbot answers badly, you can execute :commands like :trace all to see what is 
happening, then enter :revert. This automatically types the same input you did a moment 
ago and the chatbot should make the same mistake, this time under observation. You can 
keep reverting and trying again (not that it will suddenly get it right). 
 
:testpattern (…..)  sentence – the system inputs the sentence and tests the pattern against 
it. It tells you matched or failed. 
 :testpattern ( it died )  Do you know if it died?    
 
Some patterns require variables to be set up certain ways. You can perform assignments 
prior to the sentence. 
 :testpattern ($gender=male hit) $gender = male  hit me  
 



 23

:testoutput stream – the system executes the stream as though it were output and tells 
you what it would say. 
 
:testtopic topic sentence – The runs the given topic on the sentence, with tracing 
automatically on. If topic is omitted, it runs the last provided topic with the sentence. 
 
:real :command …. – prefixed before any other command, it means whatever changes to 
user state the command makes (like setting variables with :testoutput) will be saved into 
the user’s state. 
 
:repeat value – value is 0 or non-zero. It sets a global flag that lets the system repeat 
output in succession. 
 
:stats -  the system will output the cpu time per volley and the number of rules tested and 
matched. 
 
:serverlog value -  enables (1) or disables (0) logging server data into serverLog.txt 
 
:used topicname – shows which rules have been disabled. 
 
Testing a chatbot 
 
The typical thing I do is sit and chat with the bot until it says something I know is wrong. 
 
And I do the following when I see the bad input. Knowing what rule I expected to win, I 
trace the topic in which it resides, to see why it didn’t win. 
 
 :trace ~topicname  # turn on tracing (except for functions made quiet) 
 :revert  # go back to before I said my last thing 
 read the log file or the console and see where it went wrong and why 
If that isn’t helpful, I may then :trace all and then :revert again. 



 24

VARIABLES 

 
A chatbot with no ability to remember, even in the brief moment of attending to user 
input, would be an impoverished being indeed.  ChatScript supports several levels of 
memorization. 
 
_Match Variables   
 
When you use wildcards and sets in a pattern, you can ask the system to memorize briefly 
the word it matches. Just place an underscore in front of what you want memorized. The 
purpose of memorizing is to be able to use the value on output. The results of 
memorization are stored on match variables named _0, _1, etc, depending upon how 
many underscores you use in the pattern.   
 ?: ( do you eat _~meat)  No, I hate _0. 
If the input is do you eat ham the output would be No, I hate ham.  Of course, the value 
of _0 is only guaranteed for the execution of this rule. Match variables may be clobbered 
when you execute another rule. Or they may last for a while. At most it will last for the 
duration of the current volley (several sentences maybe) after which it should be 
presumed trashed. 
 
When the system memorizes your underscore match, it stores both the original word and 
its canonical form. On output, by default you get the canonical form. If you want the 
original form, you must precede your reference with an apostrophe. 
 ?: (do you eat _ [ ham eggs bacon]) I eat ‘_0. 
If the input is do you eat eggs the output is I eat eggs. Had you not used the apostrophe, 
the output would have been I eat egg.  
 
Rarely would you ever want the canonical form of memorizing an indefinite gap. 
 ?: (do you like _* or _*) I don’t like ‘_0 so I guess that means I prefer ‘_1. 
If the input is do you like eating green eggs or swimming on the beach, the output would 
be I don’t like eating green eggs so I guess that means I prefer swimming on the beach. 
 
You are allowed _0 through _9. 
 
If you memorize an optional area, _{test me}, then you get either the word that matched 
or the match variable is set to null if it fails to match. 
 
If you use match variables within a nested level, they are discarded. E.g., 
 s: (  _~fruit ( _~animal) _~like) 
In the above, _0 is a fruit and _1 is a like, and the _~animal is discarded when the ( ) 
completes. 
 
$User_Variables   
 



 25

If you need memory that lasts beyond the current input, one source of this is user 
variables. A variable is named with a starting dollar sign and then alphanumeric letters 
and possibley underscores and periods. You initialize it using a C-style assignment in the 
output. 
 s: ( My name is _*1 _*1 >) $firstname =  ‘_0  $lastname = ‘_1 Nice to meet you. 
You are advised to put these computational scripts on separate lines to make it easier to 
read your script, but ChatScript doesn’t really care. 
 s: ( My name is _*1 _*1 >)  

$firstname =  ‘_0   
$lastname = ‘_1 

  Nice to meet you. 
The variables will last forever or until you change them. If you want the variable to 
disappear at the end of the volley instead, name it with $$ at the start, e.g. $$myvar. 
 
Variable assignments extend across arithmetic operations but you cannot use parens to 
control operator precendence. E.g., 
 $myvalue = $foo + 20 * 5 / 59  This is normal output after the assignment. 
Of course it would have been clearer to write this as: 
 $myvalue = $foo + 20 * 5 / 59   

This is normal output after the assignment. 
 
You can test variables in patterns in a variety of ways. Some such tests do not affect the 
current position pointer of the match. Merely putting in the variable name will ask “does 
it have a value”? 
 ?: ( what is my name $firstname )  Your name is $firstname. 
Like match variables, you can use user variables in the output. Here, if the input is what 
is my name and $firstname has been previously assigned to, then the pattern matches. 
Otherwise it fails.  You are free to refer to variables that don’t exist. The pattern will 
simply fail. 
 
You can also directly test a variable to see if it has a particular value using a relational 
test in the pattern.  One such relation is =.  
 ?: ($gender=male I like boys)  Oh, dear. 
Here, the rule will only start checking for input matches if $gender has the value male. If 
it is not defined or has any other value, this rule fails immediately.  A relational test 
requires the two sides of the relation and the relation symbol all be jammed together with 
no spaces. So the following rule is tantamount to seeing if $gender has ever been 
assigned to, followed by seeing if the user typed =male anywhere. 
 ?: ($gender   =male ) 
 
Other relations are < and >, which will require the system convert the variable’s text 
value into numeric. 
 ?: (I am _~number years old _0<10) You are a child. 
 
You can invert a relation test using the ! operator. 
 ?: (I am ~number years old !_0<10) You are not a child. 



 26

 
You can assign match variables manually, though unless you are assigning from a match 
variable, you get no canonical data. 
 s: ( my life )  _8 = hello 
 s: (my _*1 )   _8 = _0 
In the first example, _8 gets the word hello for both canonical and original forms. It 
doesn’t process it. In the second example, since _0 has dual form, the assignment is dual 
form.  
 
Another relation is the ? which means set membership. It asks if the item on the left is a 
ultimately a member of the set on the right.  In this contrived example, one imagines: 
 concept: ~pork [bacon ham] 
 concept: ~meat [~pork ~beef ~chicken] 
 …topic definition 
 ?: ( I have _~meat _0?~pork) 
The example is contrived because one would in this case merely write: 
 ?: (I have _~pork) 
and not bother with ~meat, but one can imagine cases where you are trying to intersect 
with an unrelated set. For example: 
 concept: ~winplaceshow [first second third 1st 2nd 3rd ] 
 …topic definition 
 ?: (I came in _~placenumber _0?~winplaceshow) Congratulations. 
 
You can ask if the contents of the variable are a word in the sentence by putting an empty 
set membership relation. Since there is no set, the only context is has is the sentence itself 
as a set. This does change the match position if it is found. 
 ?: ( is your name $firstname?) Yes 
 
System-used $variables 
 
$bot – the id of the current bot in control. Set by system when a new user starts up.  
$login - set by the system to the current login id. May be user entered login or 
concatenated with ip when running from open internet. 
$loebner- defined if this is a loebner competition engine 
$randindex- the current random seed for this volley – set by engine 
$control_pre – name of topic to run in gambit mode on pre-pass, set by author 
$control_main – name of topic to run in responder mode on main volleys, set by author  
$control_post – name of topic to run in gambit mode on post-pass, set by author 
$code – which of pre, main, post is running at present – set by engine 
$token- bits controlling how the tokenizer works. By default when null, you get all bits 
assumed on. 
 1: DO_SUBSTITUTES – use the substitutes.txt file to adjust words 

2: DO_NUMBER_MERGE – merge text numbers into single tokens 
4:  DO_PROPERNAME_MERGE – merge proper names into single tokens 
8:  DO_SPELLCHECK – adjust spelling of badly spelled words 

 



 27

%System Variables  
 
The system has some predefined variables which you can generally test and use but not 
normally assign to. These all begin with % .  
 

%rand – get a random number 
   

 %date – one or two digit day of the month 
 %day -  Sunday, etc 
 %daynumber – 0-6 where 0 = sunday 
 %second – 0-59 
 %minute – 0-59 

%hour – 0-23 
 %time - hh:mm:ss 
 %week -  1-5 (week of the month) 
 %month -  1-12 (January = 1) 
 %monthname – January, etc 

%year – e.g., 2011 
 
 %input – the count of the number of inputs this user has made total over all 
 %length – the length in tokens of the current sentence 
 %tense – past , present, or future 
 %topic – name of the current “real” topic . if control is currently in topic which is  

not system,disabled, or nostay, then that is the topic. Otherwise the most 
interesting topic is found. 

 %userfirstline – value of %input that is at the start of this conversation start 
 %response – number of responses that have been generated for this sentence 

%lastoutput – the text of the last generated response 
 
Values below are all true /false and will be “1” or null. 
 

%more – is there another sentence after this  
 %morequestion – is there a ? in the remaining sentence inputs  
 %lastquestion – was the last generated response a question (has a ?)  
 %question – was the user input a question – same as ? in a pattern  

%regression – is the system running a regression test  
%server – is the system running in server mode 
%rejoinder- does the system have a rejoinder for its output 
 

You actually can assign to any of them. This will override them and make them return 
what you tell them to and is a particularly BAD thing to do if this is running on a server 
since it affects all users.  Typically one does this one in a #! comment line to set up 
conditions for testing using :verify. 
 
Long-term variables 
The system normally stores variables on a per-user basis. You can set bot-specific facts in 
the login function of a bot.  If you have facts you want to be global across all bots and as 



 28

part of the base system, you can put those assignments into a table, read in under a :build 
command. 
 
  
Facts 
 

The ultimate variable is the fact, but that is way too advanced for now.



 29

ADVANCED TOPICS 
 

There are several things to know about advanced topics.  
 
Topic Control Flags 
 
The first are topic flags, that control its behavior. These are placed between the topic 
name and the ( keywords list). You may have multiple flags. E.g. 
 topic:  ~rust noerase random [rust iron oxide] 
 
The flags and their meanings are: 
 
Random  -  search rules randomly instead of linearly 
NoRandom – (default) search rules linearly 
 
NoErase – do not mark responders as used up when they generate output. Gambits are 
always erased and rejoinders never erased (but the top level  controlling it may be). 
Erase – (default) erase rules that successfully generate output 
 
NoStay – do not consider this a topic to remain in, leave it (except for rejoinders). 
Stay – (default) make this an interesting topic when it generates output 
 
Repeat -  allow rules to generate output which has been output recently 
NoRepeat – (default) do not generate output if it matches output made recently 
 
Priority-  raise the priority of this topic when matching keywords 
Normal- (default) give this topic normal priority when matching keywords 
Deprioritize – lower the priority of this topic when matching keywords 
 
System – this is a system topic. It is automatically NoStay, NoErase. You can change the  

NoStay property, but not the NoErase property. 
 It never participates in values from ^gambittopics(), even if it has gambits. 
 System topics can never be considered interesting (defined shortly). They can not   
 have themselves or their rules be enabled or disabled. Their status/data is never  

saved to user files.  
User - (default) this is a normal topic. 
 
Bot=name – if this is given, only named bots are allowed to use this topic. You can name 
multiple bots separated by commas. E.g., 
 topic: ~mytopic bot=harry,Georgia,roman  [mykeyword] 
 
Interesting Topics 
 
The second thing to know is what makes a topic interesting. Control flow passes through 
various topics, some of which become interesting, meaning one wants to continue in 
those topics when talking to the user. Topics that are considered always uninteresting are:  



 30

system topics, disabled topics (you can disable a topic so it won’t execute), and nostay 
topics.  
 
What makes a remaining topic interesting is one of two things. Either the system is 
currently executing rules in the topic or the system previously generated a user response 
from the topic. When the system leaves a topic that didn’t say anything to the user, it is 
no longer interesting. But once a topic has said something, the system expects to continue 
in that topic or resume that topic.  
 
The system has an ordered list of interesting topics. The order is:  1st- being within that 
topic executing rules now, 2nd-  the most recently added topic (or revived topic) is the 
most interesting.. You can get the name of the current most interesting topic (%topic), 
add interesting topics yourself (^addtopic()), and pop the most interesting topic off the 
list (^poptopic()). 
 
Random Gambit 
 
The third thing about topics is that they introduce another type, the random gambit, r:.  
 
The topic gambit t: executes in sequence forming in effect one big story for the duration 
of the topic. You can force them to be dished randomly by setting the random flag on the 
topic, but that will also randomize the responders. And sometimes what you want is semi-
randomness in gambits. That is, a topic treated as a collection of subtopics for gambit 
purposes.  
 
This is r:  The engine selects an r: gambit randomly, but any t: topic gambits that follow 
it up until the next random gambit are considered “attached” to it. They will be executed 
in sequence until they are used up, after which the next random gambit is selected. 
 Topic: ~beach [beach sand ocean sand_castle] 
 # subtopic about swimming 
 r: Do you like the ocean? 
     t: I like swimming in the ocean. 
     t: I often go to the beach to swim. 

# subtopic about sand castles.  
 r: Have you made sand castles? 
  a: (~yes)  Maybe sometime you can make some that I can go see. 
  a: (~no)  I admire those who make luxury sand castles. 
     t: I’ve seen pictures of some really grand sand castles. 
 
This topic has a subtopic on swimming and one on sand castles. It will select the subtopic 
randomly, then over time exhaust it before moving onto the other subtopic. 
 



 31

Variable Remaps 
 
Match-variable names like _1 are fine when you are referring to a particular match from a 
pattern. But you can use match variables as transient global variables and such names are 
not mnemonic. You can “rename” match variables as follows: 
define: _monthname _5 -- whenver the system sees _monthname, it will use _5 
You can do this within a topic (limited to it) or outside a topic (globally thereafter).



 32

ADVANCED PATTERNS 
 
System Functions 
 
You can call any predefined system function. It will fail the pattern if it returns any fail or 
end code. It will pass otherwise. The most likely functions you would call would be: 
 ^query – to see if some fact data could be found.  
 ^eval – to evaluate a series as though it were output (like to assign a variable) 
Many functions make no sense to call, because they are only useful on output and their 
behavior on the pattern side is unpredictable. 
 
Macros 
 
Just as you can use sets to “share” data across rules, you can also write macros to share 
code. A patternmacro is a top-level declaration that declares a name, arguments that can 
be passed, and a set of script to be executed “as though the script code were in place of 
the original call”.  Macro names can be ordinary names or have a ^ in front of them. The 
arguments must always begin with ^. The definition ends with the start of a new top-level 
declaration or end of file. E.g. 

patternmacro: ^ISHAIRCOLOR(^who) 
![not never]    
[ 

  ( << be  ^who [blonde brunette redhead blond ] >>  )  
  (<< what ^who hair color  >> )  

] 
 
?: (^ISHAIRCOLOR(I))  How would I know your hair color? 

 
The above patternmacro takes one argument (who we are talking about). After checking 
that the sentence is not in the negative, it uses a choice to consider alternative ways of 
asking what the hair color is. The first way matches are you a redhead. The second way 
matches what is my hair color.  The call passes in the value I (which will also match my 
mine etc in the canonical form). Every place in the macro code where ^who exists, the 
actual value passed through will be used.  ??? what about ( ) as an argument or []/?/?? 
 
Whereas most programming language separate their arguments with commas because 
they are reserved tokens in their language, in ChatScript a comma is a normal word. So 
you separate arguments to functions just with spaces. 
 ?: ( ^FiveArgFunction( 1 3 my , word))   
 
When a patternmacro takes a single argument and you want to pass in several, you can 
wrap them in parens to make them a single argument. Or sometimes brackets. E.g., 
 ?: ( ^DoYouDoThis( (play * baseball) ) ) Yes I do 

?: ( ^DoYouDoThis( [swim surf “scuba dive”] ) Yes I do 
 
 



 33

Backward Wildcards  *-1 
 
Not only can you match forwards, you can actually request a particular word n words 
earlier than your current position. This is sometimes useful when you find the main 
keyword like a noun, and then want to go back and find out any adjective modifying it. 
 ?: (  _~pet _*-1  _1?~adjective)  A ‘0 ‘1? 
This pattern reacts to Do you have a red dog by matching the essential word dog (as 
~pet) and then backing up and grabbing the preceding word and testing to see if it is an 
adjective. If so, the response is A red dog? 
 
Question and exclamation ?  ‘! 
Normally you already know that an input was a question because you used the rule type 
?: . But rejoinders do not have rule types, so if you want to know if something was a 
question or not, you need to use the ? keyword. It doesn’t change the match position 
 t: Do you like germs? 
  a: (?) Why are you asking a question instead of answering me? 
  a: (!?) I appreciate your statement. 
 
If you want to know if an exclamation ended his sentence, just quote a ! so it won’t be 
treated as a not request. This doesn’t change the match position. 
 s: (I like ‘!)  Why so much excitement 
 
Literal Next  \ 
 
If you need to test a character that is normally reserved, like ( or [, you can put a 
backslash in front of it. 
 s: (  \( * \)  )  Why are you saying that aside? 
 
More comparison tests  & and ? 
 
You can use the logical and bit-relation to test numbers. Any non-zero value passes. 
 s: ( _~number _0&1)  Your number is odd. 
 
? can be used in two ways. As a comparison operator, it allows you to see if the item on 
the left side is a member of a set on the right. E.g. 
 u: (_~propername?~bands) 
 
As a standalone, it allows you to ask if a wildcard or variable is in the sentence. E.g. 
 u: ( _1? )  
 u: ( $bot? ) 
 
Comparison with C++ #define in dictionarysystem.h 
 
You can name a constant from that file as the right hand side of a comparison test by 
prefixing its name with #. E.g., 
 s: ( _~number _0=#NOUN)  



 34

 
Indirect pattern elements 
 
Most patterns are easy to understand because what words they look at is usually staring 
you in the face. With indirection, you can make pass patterns data from other topics, at a 
cost of obscurity. Declaring a macro does this. A ^ normally means a macro call (if what 
follows it is arguments in parents), or a macro argument. The contents of the macro 
argument are used in the pattern in its place. But macro arguments only exist inside of 
macros. But macros don’t let you write rules, only pieces of rules. 
 
The functional user argument lets you pass pattern data from one topic to another. 

s: ( are you a _^$var )  
The contents of $var are used at that point in the pattern. Maybe it is a set being named. 
Maybe it’s a word. You can also do whole expressions, but if you do you will be at risk 
because you won’t have the script compiler protecting you and properly formatting your 
data. 
 
The other thing you can do is change pattern context by position a pattern to a prior 
match location. Just as < sets the position pointer to the start, @_2 makes the pattern 
think it just matched that wildcard at that location in the sentence. 
 s: ( _is _~she )   # for input: is mother going this sets _0 to is and _1 to mother 
 s: ( @_1 going ) # this completes the match of is mother going 
 
OK. Setting positional context is really obscure and probably not for you. So why does it 
exist? It supports shared code for pseudo parsing. The topic ~pronounanalyze below 
looks for male and female references in a sentence (only female is shown). When found, 
it uses a shared topic ~gathernounphrase to retrieve the complete reference. 
 
topic: ~PRONOUNANALYZE system[] 
u: ( _~she )  

$result = null 
 respond(~GATHERNOUNPHRASE) 
 if ($result) { $she = $result } 
 
The topic ~GatherNounPhrase will try to locate a noun phrase starting from where the 
male or female reference matched in the above topic and then continuing to match 
backwards pieces. 
 
topic: ~GATHERNOUNPHRASE system[] 
u: (*) ^refine()  # select only one method of matching noun phrase 
 # my mother is good  
 a: ( @_0 _*-1 '_1?~determiner) $result = join('_1 _ _0) 
  
 # is my aged mother good  
 a: (  @_0 _*-2 '_1?~determiner _*1 _2=~adjective) $result = join('_1 _ _2 _ _0) 
 



 35

 # while my large aged mother is good, I’m not  
 a: (  @_0 _*-3 '_1?~determiner _*1 _2=~adjective _*1 _3=~adjective)  

$result = join('_1 _ _2 _ _3 _ _0) 
  
 # Rachel is good  
 a: (  @_0 _0?~propername ) $result = _0 
 
 



 36

ADVANCED OUTPUT 
 

Simple output puts words into the output stream. When the rule successfully completes, 
that stream is stored away to be said to the user, unless the output was destined for storing 
on a variable or becoming the argument to a function or macro. 
 
What I didn’t tell you before was that if the rule fails along the way, an incomplete 
stream is cancelled and says nothing to the user. I also didn’t tell you that the system 
monitors what it says, and won’t repeat itself (even if from a different rule) within the last 
20 outputs. 
 
We will now learn functions that can be called that might fail or have interesting other 
effects. And some control constructs. 
 
Loop Construct 
 
The loop allows you to repeat script. It takes an optional argument within parens, which 
is how many times to loop. It executes the code within { } until the loop count expires or 
until a FAIL or END code of some kind is issued. Fail(rule) and End(rule) signal merely 
the end of the loop, not really the rule. All other return codes have their usual effect. 
 t:  Hello.  loop (5) { me } 
 t:  loop () { This is forever, not. fail(RULE)} 
The first gambit prints Hello. me me me me me. The second loop would print forever, but 
actually prints out nothing because after starting output, the loop fails and cancels the 
output. 
 
If Construct 
 
The if allows you to conditionally execute blocks of script. The full syntax is: 
 If ( test1 ) {  script1  }  else if ( test2 ) { script2 } … else { script3 } 
You can omit the else if section, having just if and else, and you can omit the else section, 
having just if or  if and else if. You may have any number of else if sections. 
The test condition can be: 
1. A variable – if it is defined, the test passes 
2. !variable – if it is not defined, the test passes  (same as relation   variable == null) 
3. A function call – if it doesn’t return a fail code it passes 
4. A relation – one of ==   !=   <   <=   >   >=  

You may have a series of test conditions separated by AND and OR. The failure of the 
test condition can be any end or fail code. It does not affect outside the condition; it 
merely controls which branch of the if gets taken. 
 if ($var) { }  #  if $var has a value 
 if ($var == 5 and foo(3)) {}  # if $var is 5 and foo(3) doesn’t fail  
 



 37

Output Macros 
 
Just as you can write your own common routines for handling pattern code with 
patternmacro:, you can do the same for output code. Outputmacro: name (^arg1 ^arg2 
…)  and then your code. Only now you use output script instead of pattern stuff. Again, 
when calling the macro, arguments are separated with spaces and not commas. 
Wheras most programming language separate their arguments with commas because they 
are reserved tokens in their language, in ChatScript a comma is a normal word. So you 
separate arguments to functions just with spaces. 
 ?: ( hi)  ^FiveArgFunction( 1 3 my , word)   
 
 
System Functions 
 
System functions are predefined and can be intermixed with direct output.  You can write 
them with or without a ^ in front of their name. With is clearer, but you don’t have to. 
The only time you must, is if the first thing you want to do in a gambit is call a function 
(unlikely).  
 t: name(xxxx ) This is ambiguous. Is it function call or label and pattern? 
The above is treated as a label and pattern. You can force it to be a function call by one of 
these: 
 t: ^name(xxx )  # explicilty say it is a function 
 t: () name(xxx ) # explicitly add an empty pattern 
 
Control Functions 
 
^fail( code ) - takes 1 argument and returns a failure code which will stop processing. 
How extensive that stop is, depends on the code. If ^fail is contained within the condition 
of an if or it’s a fail(rule) in the body of a loop, it merely stops those and not anything 
broader. The failure codes are: 
    RULE –stops the current rule 
    TOPIC- stops not only the current rule also the current topic.  
    SENTENCE – stops the current rule, the current topic, and the current sentence. 
If you issue a fail(topic), then rule processing stops for that topic, but as it exits, it passes 
up to the caller a downgraded fail(rule), so the caller can just continue executing other 
rules. 
 
^nofail(code …script…) – the antithesis of fail(). It takes a code and script, executes the 
script and removes all failure codes through the listed code. This is important when 
calling ^respond and ^gambit from a control script. You would want a control script to 
pass along codes at the sentence level, but if the respond call generated a fail-rule return, 
you don’t want that to stop all the code of a control script responder. 
 
^end(code) - takes 1 argument and returns a code which will stop processing. Any data 
pending in the output stream will be shipped to the user. If ^end is contained within the 



 38

condition of an if or  is end(rule) in the body of a loop, it merely stops those. The codes 
are: 
    RULE – stops the current rule. Whether the next rule triggers depends upon whether  

or not output was generated. 
    TOPIC – stops the current topic. 
    SENTENCE -  stops the current rule, topic, and sentence. 
    INPUT – stops all the way through all sentences of the current input. 
 
^repeat() – allows this rule to generate output that may repeat what has been said  

recently by the chatbot.  
 
^system( any number of arguments)  - the arguments, separated by spaces, are passed as 
a text string to the operating system for execution as a command. The function returns 
RULE fail if the operating system returns a non-zero value. You can transfer data back 
and forth via files by using ^import and ^export of facts. 
 
^enable ( what name) – what can be topic or rule. If what is topic, then name must be a 
topic name. It enables the topic if it was disabled (by default topics are enabled). If what 
is a rule, then name is a rule label in the current topic or is a dotted pair of topicname and 
label. If what is disable, it alters whether the system can disable a new matching rule or 
not (any non-0 value means it can).  
 
^disable ( what name) – what can be topic or rule or rejoinder. If what is topic, then 
name must be a topic name. It disables the topic, which means the system will 
automatically fail execution. If what is a rule, then name is a rule label in the current 
topic or is a dotted pair of topicname and label. It means the rule is marked as used up, so 
it cannot be used. If what is a rejoinder then it will cancel any pending rejoinder (no 
name argument is needed). 
 
^retry()  - rexecute the current rule. You better change SOMETHING in the world, or it 
will just infinitely loop on itself. 
 
^input( …..)  - the arguments, separated by spaces, are feed back into the input stream as 
the next input. Typically this command is then followed by ^fail(SENTENCE) to cancel 
current processing and move onto the revised input. Since the sentence is fed in 
immediately after the current input, if you want to feed in multiple sentences, you must 
reverse the order so the last sentence to be processed is submitted via input first. 
 
^mark ( word match_variable match_variable) – the word or topic or concept name is 
marked as though it had been in the input at the point 1st match variable. If that match 
variable is omitted, then at the last element of the pattern matched. If the second 
match_variable is supplied, this marks the end of a phrase being matched, otherwise it 
defaults to the first match_variable (a 1-word phrase). 
 
Marking means the pattern matching system will react to it. Used typically to mark a 
topic to be visited when some idiomatic phrase implies it but keywords wouldn’t. E.g., 



 39

 ?: (what do you do ) ^mark(~occupation) 
Then you’d have a pattern within the topic to handle this idiom. Also for performing 
pronoun substitution. If the value of $she was mother, then 
 ?: ( she ) ^mark($she) 
would put the word mother marked as though it had been typed instead of she, so both 
she and mother occur in the same spot. Marking does not change the word, so a 
subsequent pattern 
 ?: (_mother) would match from the mark, but _0 would be set to she. 
 
^unmark (word match-variable) – the inverse of ^mark, this takes a match-variable that 
was filled at the position in the sentence you want erased and removes the mark on the 
word or concept set or topic name given. Pattern matching for it in that position will now 
fail. If match-variable is omitted, the last word of the sentence is used. 
 
^analyze (stream)  - the contents of the stream (one sentence) are analyzed like input to 
the system, so that thereafter patterns and rules operate on it. Used to analyze the 
chatbot’s output – things like auto-pronoun handling, etc. 
 
^setquestion ( value ) – value is 0 or 1 and it sets the internal flag that indicates that the 
current sentence is a question or not.  
 
^reset ( what ? ) – what can be user or topic. If user, the system drops all history and 
starts the user afresh from first meeting. If topic, you must name the topic. It will re-
enable all rules within the topic. If you name no topic, ALL topics are reset. 
 
^refine()  - this is like a switch statement in C.  It executes in order the rejoinders 
attached to its rule. When the pattern of one matches, it executes its output and is done, 
regardless of whether or not the output fails.  
 
^blacklist( minutes) – do not respond to this user ip for the next minutes count. 
 
^match(what ) – This does a pattern match using the contents of what (usually a variable 
reference). It fails if the match against current input fails. 
 
Topic Functions 
 
^rejoinder( ) – see if the prior input ended with a potential rejoinder rule, and if so test it 
on the current sentence. 
 
^respond( topic-name)  - tests the sentence against the named topic in responder mode to 
see if any rule matches (executes the rule when matched). It does not fail (though it may 
not generate any output), unless a rule forces it to fail or the topic requested does not exist 
or is disabled. 
 
^gambit( topic-name)  - runs the named topic in gambit mode to see if any gambits arise. 
It does not fail unless a rule forces it to fail or the named topic doesn’t exist or is 



 40

disabled. The topic-name may be ~, which means use the current topic you are within. If 
the topic-name is omitted entirely, the system will walk the interesting topics list most 
recent first, trying each in turn to find a gambit. As it tries them it uses them up, so ones 
that fail to produce a gambit will disappear as interesting topics for the future. 
 
^gambittopics() – finds user topics (not system topics) with gambits remaining. If you 
use it in a fact-set assignment statement, it stores all topics found as facts (topicname 
^gambittopics ^gambittopics). You can then display them or use them as you wish E.g. 
 @1 = ^gambittopics() 
 ^gambit( ^pick(@1))   #  randomly issue a gambit 
Otherwise, if you don’t use an assignment, it outputs the first topic found into the output 
stream and stops.  If no topics are found, the function returns RULE fail. 
 
^keywordtopics() – gets the most salient topics covering the input (excluding system, or 
disabled topics). Usually stored into a fact set as facts, if not within an assignment just the 
most salient is put into the output stream. Facts are most salient first. E.g. 
 @7 = keywordtopics() 
 ^gambit(first(@7subject)) 
       
^addtopic(topicname) – adds the named topic as an interesting topic. Typically you 
don’t need to do this, because finding a reaction from a topic which is not a 
system,disabled,or nostay topic will automatically add it to the interesting list. See 
%topic and ^popic() for accessing this list. 
 
^poptopic(topicname) – removes the named topic as an interesting topic. The intent is 
not to automatically return here in future conversation. If topicname is omitted, removes 
the current topic. 
 
^reuse( rule-label  optional-enable) - uses the output script of another rule. The label can 
either be a simple rule label within the current topic, or it can be a dotted pair of a topic 
name and a label within that topic. ^reuse stops at the first correctly labeled rule it can 
find and issues a RULE fail if it cannot find one. When it executes the output of the other 
rule, that rule is credited with matching and is disabled if it is allowed. If not allowed, the 
calling rule will be disabled if it can be. 
 t: NAME () My name is Bob. 
 ?:  ( << what you name >>) ^reuse(NAME) 
 ?:  ( << what you girlfriend name >>) ^reuse(~SARAH.NAME) 
 
Normally reuse will use the output of a rule whether or not the rule has been disabled. 
But…if you supply a 2nd argument (whatever it is), then it will ignore disabled ones and 
try to find one with the same label that is not disabled. 
 
Number Functions 
 
^compute(number operator number) - performs arithmetic and puts the result into the 
output stream. Numbers can be integer or float and will convert appropriately. There are a 



 41

range of operators that have synonyms, so you can pass in directly what the user wrote. 
The answer will be ? if the operation makes no sense and infinity if you divide by 0.   
~numberOperator recognizes these operations  
 +  plus  and   (addition) 

-  minus  subtract  deduct  (subtraction) 
*  x  time  multiply (multiplication) 
/  divide  quotient (float division) 

 % remainder  modulo mod  (integer only- modulo) 
 root  square_root (square root)  
 ^  power (exponent ) 
 random ( 0 random 7 means 0,1,2,3,4,5,6  - integer only) 
 
Basic operations can be done directly in assignment statements like: 
 $var = $x + 43 
 
^find( setname itemname) – given a concept set, find the ordered position of the 2nd 
argument within it. Output that index. Used, for example, to compare two poker hands. 
 
Output Functions 
 
^preprint ( xxxx  )  - the stream of xxxx will be put into output, but it will be placed 
before all previously generated outputs instead of after, which is what usually happens. 
The output is safe in that even if the rule later fails, this output will go out. This is used, 
for example, to do transitional phrase printing. Once the system has generated output, you 
can know what topic it came from and what topic it started out in. If it has changed 
topics, you can insert a transitional sentence at the front. A rule that performs preprint 
does not automatically try to erase itself. Only if data is left in the output stream when a 
rule ends will that data be output normally and the rule try to erase itself. 
 
 
Word Functions 
 
^pos(  part-of-speech  word supplemental-data) - generates a particular form of a word in 
any form and puts it in the output stream.  If it cannot generate the request, it issues a 
RULE failure. 
    NOUN x SINGULAR, PLURAL, PROPER, 1, other positive numbers 
 This converts the word to the appropriate designation.  
    VERB x PARTICIPLE, INFINITIVE, PAST 
    DETERMINER x – 
 This outputs the determined form of x. If x is a gerund, only x is output. If x 
already has an a, an, the as the head of the phrase, only x is output. If x is a mass noun or 
a proper noun, only x is output. If x is plural, the x is output, otherwise a or an is output. 
    PLACE n – generates appropriate place- 1st, 2nd, 3rd, 12th, etc. 
    AUX x pronoun – generate correct form of auxiliary verb x, given personal pronoun 
 I,you,he/she/it. 
 



 42

^define ( word) – output the definition of the word 
 
^length( word ) – puts the length of the word into the output stream. If word is actually a 
fact set reference (e.g., @2 ), it returns the count of facts in the set. 
 
^join ( any number of arguments ) – concatenates them all together, putting the result 
into the output stream. 
 
^burst( data-source burst-character ) – takes the data source text and hunts within it 
for instances of the burst-character. If it is being dumped to the output stream then only 
the first piece is dumped. If it is being assigned to a fact set (like @2) then a series of 
transient facts are created for the pieces, with the piece as the subject and ^burst ^burst as 
the verb and object. If it is being assigned to a match variable, then pieces are assigned 
starting at that variable and moving on to successively higher ones. If burst_character is 
omitted, it is presumed to be _ (which separates words). If burst does not find a separator, 
it puts out the original value. For assignment to match variables, it also clears the next 
match variable. 
 
^spell(pattern fact-set) – given a pattern, find words from the dictionary that meets it and 
create facts for them that get stored in the referenced fact set. The facts are created with 
subject 1, verb word, and object the found word. The pattern is a text string describing 
possibly the length and letter constraints. If there is an exact length of word, it must be 
first in the pattern. After which the system matches the letters you provide against the 
start of the word up until your pattern either ends or has an asterisk or a period.  A period 
means match any letter. An asterisk matches any number of letters and would normally 
be followed by more letters. The * will swallow letters in the dictionary word until it can 
match the rest of your given pattern. It will keep trying as needed. Eg. 
 ^spell(4the @1)  will find them but not their 
 ^spell(am*ic @1) will find American 
 ^spell(a*ent @1) will find abasement 
 ^spell(h.l.o @1) will find hello 
 
^spellmatch(word pattern) – given a text string and a pattern (as defined by ^spell), see 
if the word matches the pattern. 
 
^substitute( mode find oldtext newtext) – outputs the result of substitution. Mode can be  
character or word. In the text given by find, the system will search for oldtext and 
replace it with newtext, for all occurrences. This is non-recursive, so it does not also 
substitute within replaced text. Since find is a single argument, you pass a phrase or 
sentence by using underscores instead of spaces. ^substitute will convert all underscores 
to spaces before beginning substitution and will output the spaced results. In character 
mode, the system finds oldtext as characters anywhere in newtext. In word mode it only 
finds it as whole words in newtext. 
 ^substitute(w “I love lovely flowers” love hate) outputs I hate lovely flowers 
 ^substitute(c “I love lovely flowers” love hate) outputs I hate hately flowers 
 



 43

^rhyme(word) – finds a word in the dictionary which is the same except for the first 
letter (a cheap rhyme). 
 
^nolowercase(word) – finds if a word has a lower-case form in the dictionary, failing if 
it does. Often the system will have difficulty if a proper noun title of a book or film 
matches that of a simple lower case word. I generally omit titles that conflict, like “Love 
Story” conflicts with the simple love_story, a romance tale. 
 
^sexed( word he-choice she-choice it-choice) – given a word, depending on its sex the 
system outputs one of the three sex choices given. An unrecognized word uses it. 

^sexed(Georgina he she it) would return she 
 
^addproperty ( word  flag1 … flagn) – given the word, the dictionary entry for it is 
marked with additional properties, the flags given which must match property flags in 
dictionarySystem.h. Typically used to mark up titles of books and things when building 
world data. In particular, however, if you are adding phrases or words not in the 
dictionary which will be used as patterns in match, you should mark them with 
PATTERN_WORD. 
 
^command( args) – execute this stream of arguments through the : command processor. 
You can execute debugging commands through here. 
 
Concept Functions 
 
^pick ( ~concept) – retrieve a random member of the concept. Pick is also used with 
factsets to pick a random fact (see FACTS). 
 
Debugging Functions 
 
^log (any number of arguments) – dumps the argument values into the log file. 
 
 
Randomized Output  Revisited  [] 
 
Remember this construct: 
 ?: (hi)  [How are you feeling?][Why are you here?]   
These choices are picked equally. But maybe you don’t want some choices. You can put 
an existence test of a variable at the start of a choice to restrict it. 
 ?: (hi)  [$ready How are you feeling?][Why are you here?]  
In the above, the first choice is controlled by $ready. If it is undefined, the choice cannot 
be used.  You can also use negative tests. 
 ?: (hi) [!$ready this is a][This is b] 
In the above only if $ready is undefined can you say this is a 
 
Choices lead to issues when you want rejoinders. You can label rejoinder branches of 
choices. Those without labels default to a: 



 44

?: (what meat) [c: rabbit ] [e: steak] [ h: lamb] [pork] 
a: this rejoinders pork 
c: this rejoinders rabbit 
e: this rejoinders steak 
 f: this rejoinders on e: 
h: this rejoinders lamb 

In the above, pork  rejoinders at a:, while the other choices name their rejoinder value. 
Each new starting label needs to be at least one higher than the rejoinder before it. That 
allows the system to detect rejoinders on rejoinders from choice branches. 
 
If you do both variable control and rejoinder label, the control comes first and label after 
you have successful control. 

?: (what meat) [$ready c: rabbit ] [e: steak] [ g: lamb] [pork] 
 

The # character revisited 
 
Yes, normally # means comment. But it is also used to access predefined number 
constants from ChatScript Engine. I said earlier that you could use a #define constant 
from dictionarySystem.h by using #name in the comparison syntax like 

u: (  _0=#NOUN ) 
So it should come as no surprise that you can actually do that as a stand-alone item in any 
pattern (for which there is probably no use) and in output. It is useful, for example in 
setting the $token value to control tokenization. E.g., 
 u: () $token = 255 - #DO_SPELLCHECK   # removes spell check use  



 45

ADVANCED DEBUGGING 
 
Authorization to use the : commands comes from reading the file authorizedIP.txt 
which names all or is a list of acceptable IP addresses (so no user can command a 
chatscript server inappropriately.) 
 
: facts – this writes all current facts into a file TMP/facts.txt. It allows you to see 
everything the system knows at the moment. 
 
:debug – used to get breakpoint control over the system when debugging the engine. You 
add this to some data source file prior to building, just before you want to debug, and set 
the breakpoint in the :debug code. 
 
:shutdown- exit the program (used to restart a server version completely) 
 
:bot – botname – in non-server mode, when you have multiple bots compiled together, 
you have to remember to append a botname to your login or you get the default bot. This 
allows you to change after you have forgotten, and will start a conversation with the 
named bot instead. 
 
:verifysub  - runs a regression test to prove the substitutes in LIVEDATA/substitutes.txt 
are all working correctly. 
 
:execute function(args) – execute the function and args specified. Technically it 
executes the output data given, but there is little point in it being other than a function 
call. 
 
:verify ~topicname – for the named topic (or all topics if none is given) it looks for rules 
that have special verification data associated with them that allows it to test the pattern of 
the rule to see if it is correctly handled. Before any rule you can put a comment in the 
form: 

#!  This is sample input 
?: (sample)  this is my rule 

The system will use the comment as input and see if the rule can match it. It does not 
execute the output.  Rules that need variables set certain ways can do variable assigns at 
the end of the comment. You can also have more than one verification line before a rule. 
 #! I am male  $gender = male 
 #! I hate males $gender = male 
 s: ($gender=male I * male) You are not my type 
 
You can also test that the input does not match the pattern by using #!!R instead of #!, 
though unless you were writing engine diagnostic tests this would be worthless to you. 
 
Another form is !x, which says this is just a comment to be displayed by the :abstract 
command. 
 



 46

If :trace has been set non-zero, then tracing will be turned off during verification, but any 
rules that fail will be immediately be rerun with tracing on. 
 
This testing is for patterns, given that you actually get to the rule itself. But you might not 
get to the rule if some rule earlier in the topic has a matching pattern. But you can test for 
that too, though the report of failures may be extensive and tedious. 
 
:verify topic   and   :verify topic ~topicname will test the entire topic and report on rules 
that are blocked by earlier rules. This presumes you are within the topic and says nothing 
about whether the rule could be reached if you were outside the topic (i.e., can keywords 
of the input get you to that topic in the first place). 
 
Blocking may mean you should reorder the rules. Or it may happen because you have 
multiple rules to cover the same input (after one gets erased). Or maybe you just 
redundantly covered things and should eliminate a rule. If you know the rule will fail and 
don’t want it reported, mark its comment as #!!T instead of just #!. This will allow it to be 
tested with rule testing, but not topic testing.  By the way, the corresponding full form of 
the original command is :verify pattern and :verify pattern ~topicname but the system 
detects if you omit the kind pattern and defaults to it. 
 
And, a rule may not be findable if outside the topic when the input lacks appropriate 
keywords. You can test for this with :verify outside  and  :verify outside ~topicname. This 
reports sample inputs that contain no keywords of the topic. This may or may not be 
something you should alter. Depends upon your purpose. 
 
:abstract –  prints out an abstract view of the entire topic data or the named topic. This 
shows the structure (gambits, rejoinders, responders) as well as conditions on gambits 
and normal text content of everything, but omits actual code complexity. It is useful for 
seeing what will be said in response to sample input (if you use the #! and #!x commands 
on rules. E.g.  
 
****** Topic: ~introductions[] 
t: ( $old   %input=0   %hour<12 $name ) Good morning, .  
t: ( $old   %input=0   %hour>11   %hour<18 $name ) Good afternoon, .  
t: ( $old   %input=0   %hour>18 $name ) Good evening, .  
t: Where do you live?  
    a: "Fukushima" =>   I've heard of _0. Were you born there?  
    a: "I live in Japan" =>   I've visited Japan.  
    a: "I live in California" =>   That's where I live!  
    a: "Libya" =>   I would have thought you lived in Japan, not _0 .  
    a: "Earth" =>   Yes, we all live on Earth.  
    a: "Mars" =>   I don't believe you.  
t: What do you do for a living?  
u: "Am I welcome here?" =>   Of course you are welcome.  
s: "I'm back" =>    
   [ Where did you go?  ] 



 47

   [ Where have you been?  ] 
   [ I'm glad.  ] 
s: "Knock" =>   Who's there?  
 
While :abstract primary does topics, you can get it to do fact data as well. It will attempt 
to call a function ^abstract_facts(), so if you define that, you can do whatever you want 
for abstracting facts. 
 
:fakereply value – instead of getting input from you, it always makes the input OK if 
value is 1 or WHY?  if value is 2.  This is a stress test for systems, to prove they keep 
going without crashing. 
 
:source filename – switches to reading input from a file instead of stdin. The system 
normally prints out just the output, while the log file contains both the input and the 
output. You can say :source filename echo  to have input echoed to the console. If you 
say :source filename internal the system will echo the input, then echo the tokenized 
sentences it handled. 
 
:restart – makes the system reload its data files (dictionary, topics, livedata) on the fly. 
This is useful if you have a live server and want to upload changes into it. 
 
:trim directory value -  this reads all the log files in a directory and writes out a file x.txt 
in a format specified by value.  2 means show the users input on one line and indent the 
computer’s output on the next. 5 means show on one line the computer’s output followed 
by =>  and the the user’s output. The 5 format is good for finding all the ways humans 
have responded to some output you make, so you can plan for clever rejoinders. 
 
:topics – displays a list of all topics defined. 
 
:help- displays available commands and a brief statement of purpose 
 
:dumpset  conceptname value – this dumps a concept ontology in various formats. 
:dumpset ~nouns 0 shows the noun hierarchy tree by concept (without showing the actual 
words).  For each concept, it shows how many words it covers.  
:dumpset ~nouns 1 shows the same tree, but populates it with the actual vocabulary 
covered. 
 
:attopic – for all topics this dumps both the sample input from the verification comment 
(if there is one) and the normal text (w/o fancy script code) of what the system would say. 
It’s a more legible non-technical overview of your topic code. 



 48

 
SIMPLE FACTS 

 
Facts are triples of subject, verb, object – though those are just the names of the fields 
and may or may not be their content. Facts look like this:  

 (Bob eat fish )  
The system has a number of facts it comes bundled with and others can be created and 
stored either from compiling scripts, or from interactions with the user.  Facts can use 
words, numbers, or other facts as field values, representing anything. You can build 
records, arbitrary graphs, treat them as arrays of data, etc. 
 
Simple Creating Facts 
 
^createfact( subject verb object ) – this creates a fact triple. The system will not create 
duplicate facts. If you have a fact (Bob eat fish) then executing  

^createfact(Bob eat fish) 
will do nothing further (but it will return the found fact). One way to create a fact of a 
fact is as follows: 
 ^createfact( (Bob eat fish)  how  slowly ) 
The other way is to assign the value of fact creation to a variable and then use that 
variable. You need to pass in a flag at creation, to tell the system the value is a factid. 
 $fact = ^createfact( Bob own fish) 
 ^createfact ($fact Bob pet FACTSUBJECT) 
 $fact = ^createfact( Bob own dog) 
 ^createfact ($fact Bob pet FACTSUBJECT) 
The above creates facts which are findable by querying for pets Bob has. You can have 
any number of flags at the end. Other flags include: 
 FACTVERB and FACTOBJECT 
 TRANSIENT – the fact will disappear at the end of this volley 
 
Accessing Facts 
 
To find facts, you need to make a query. There can be many different kinds of queries.  
 
^query(kind subject verb object) – The simplest query names the kind of query and gives 
some or all of the field values that you want to find. Any field value can be replaced with 
? which means either you don’t care or you don’t know and want to find it. The kinds of 
queries are programmable and are defined in LIVEDATA/queries.txt (but you need to be 
really advanced to add to it). The simplest query kinds are: 
 direct_s -  find all facts with the given subject 
 direct_v – find all facts with the given verb 
 direct_o – find all facts with the given object 
 direct_sv – find all facts with the given subject and verb 
 direct_vo – find all facts with the given object and verb 
 direct_svo- find all facts given all fields (prove that this fact exists). 
 



 49

 Unipropogate – find how subject joins into the object set. 
 
If no matching facts are found, the function returns the RULE fail code. 
 
 ?: (do you have a dog)  ^query( direct_svo I own dog)  Yes. 
 
If the above query finds a fact (I own dog) then the rule says yes. If not, the rule fails 
during output. This query could have been put inside the pattern instead. 
 
For unipropogate, if you have these concepts; 
 concept: ~things (~animals ~vegetables ~minerals) 
 concept: ~animals (~canine ~feline) 
 concept: ~canine (dog) 
  
Then  ^query(unipropogate dog ? ~things 1) would return (~animals member ~things). 
Note that the set to be found (~things) is not expanded. Normal queries expand any 
reference to a set into all of its members. But unipropogate expects a set as its object 
argument, so it does not need to be quoted. 
 
 
System-reserved verbs 
 
The system builds the Word-net hierarchy using the verb is, with the lower-level (more 
specific) word as subject and the upper-level word as object. E.g., 
 (dog~1 is animal~4) 
The system builds concept and topic sets using the verb member with the member value 
as subject and the set name as object. E.g., 
 (run member ~movementverbs) 
When you build a table and a data member has a short-form like Paris for Paris,_France, 
the verb is also member with subject as short form and long form as object. E.g., 
 (Paris member Paris,_France) 
 
@Fact-Sets  
 
The results of queries are stored in a fact-set. Fact-sets are labeled @0,  @1, etc. through 
@9.  By default in the simplest queries, the system will find all facts that match and store 
them in fact-set @0.  A fact set is a collection of facts, but since facts have fields (are like 
records), it is also valid to say a factset is a collection of subjects, or verbs, or objects. 
Therefore when you use a factset, you normally have to specify how you want it used. 
@1subject means use the subject field 
@1verb means use the verb field 
@1object means use the object field 
@1fact means keep the fact intact (a reference to the fact) – required if assigning to 
another set. 
@1+ means spread the subject,verb,object onto successive match variables – only valid 
with match variables  



 50

@1- means spread the object,verb,subject onto successive match variables– only valid 
with match variables  
@1all means spread subject,verb,object,flags onto successive match variables. – only 
valid with match variables  
_6 = ^first(@1+)   - this puts subject in _6, verb in _7, object in _8 
 
 ?: (do you have a pet  ^query( direct_sv I pet ?) )  I have a @0object. 
If the chatbot has facts about what pets it has stored like (I pet dog) and (I pet cat), then 
the rule can find them and display one of them. Which one it shows is arbitrary, it will be 
the first fact found. 
 
You can transfer the contents of one fact-set to another with a simple assignment 
statement  like @2 = @1 . 
 
You can transfer fields of a fact from a fact-set using assignment, while simultaneously 
removing that fact from the set. The functions to do this are: 
^first( fact-set ) – retrieve the first fact 
^last ( fact-set ) – retrieve the last fact 
^pick ( fact-set) – retrieve a random fact 
 
You can erase the contents of a fact-set merely by assigning null into it. 
 @1 = null 
This does not destroy the facts; merely the collection of them. 
 
You can sort a fact set which has number values as a field. 
^sort( fact-set) – the fact set is sorted from highest first. By default, the subject is treated 
as a float for sorting. You can say something like @2object to sort on the object field. 
 
If you actually want to destroy facts, you can query them into a fact-set and then do this: 
^delete(@1)  – all facts in @1 will be deleted and the set erased 
 
If you want to know how many facts a fact-set has, you can do this: 
^length(@1)  - outputs the count of facts 
 
A special count function exists to tell you how many members a concept set has. 
^countmember( concept-topic-name ) – this will tell you how many members are in this 
concept or topic at the top level (not recursive). 
 
^Unpackfactref examines facts in a set and generates all fact references from it. That is, it 
lists all the fields that are themselves facts. 

@1 = ^unpackfactref( @2)   
All facts which are field values in @2 goto @1. 
 
Unlike variables, which by default are saved across inputs, fact sets are by default 
discarded across inputs. You can force a set to be saved by saying: 
 ^save(@9 true)  # force set to save thereafter 



 51

 ^save(@9 false)  # turn off saving thereafter 
 
 
Fact Indexing 
 
A fact like (bird eat worm) is indexed by the system so that bird can find facts with bird 
as the subject or as the verb or as the object. Similarly eat can find facts involving it in 
each position. As a new fact is added, like (bird hate cat) the word bird gets the new fact 
added to the front of its list of facts involving bird in the subject field. So if you search 
for just one fact where bird is the subject, you get the most recent fact. If you search for 
all facts with bird as the subject, the facts will be stored in a fact set most recent first 
(lowest/earliest element of the fact set). You would use ^first(@2) to get its most recent 
fact and ^last(@2) to get its oldest fact. 
 
Tables 
 
With the ability to create and manipulate facts comes the need to create large numbers of 
them conveniently. This is the top-level declaration of a table, a combination of a 
transient output macro declaration and a bunch of data to execute the macro on.  Usually 
the macro creates facts.  
 
The table has a name (ignored- just for your documentation convenience), a list of 
arguments, a bunch of script, a DATA: separator, and then the table data. The data is line-
oriented. Within a line there are no rules about  whitespace; you can indent, tab, use lots 
of spaces, etc. Each line should have as many elements as the table has arguments. The 
table ends with the end of file or a new top-level declaration.  E.g., 
 Table: authors (^author ^work ^copyright) 
  ^createfact(^author member ~author) # add to concept ~author 
  ^createfact(^work member ~book)  # add to concept ~book 
  ^createfact(^work exemplar ^author)  # author wrote this book 
  if (^copyright != *) { ^createfact(^copyright date ^work) }   
 Data: 
 “Mark Twain”  “Huckleberry Finn” 1884   
 “Mark Twain” “Tom Sawyer” *   # don’t know the date 
 
For tables with really short data, you can choose to cheat on the separate line concept, 
and separate your entries with \n  , which is the equivalent. 
 DATA: 
 a 1 \n b 2 \n c 3 \n d 4 \n e 5 # values assigned to letters.  
 f 6 g 7  
 
A table allows you to automatically list shortened synonyms of proper names. For 
example, Paris is a shortened synonym for Paris, France. In a table of capitals, you 
would normally make the fact on the full name, and write the shortened synonyms in 
parens. You may have more than one: 
 “Paris, France” (Paris “City of Love”)  France 



 52

These synonyms are represented using the member verb, sort of like making a concept set 
of the full name. The system detects this specially during inferencing, and if an argument 
to ^query were Paris, it could automatically transfer across and consider facts for 
Paris,_France as well. It would not go the other way, however, so if the argument were 
Paris_France, it would not move over to Paris. You should store your facts on the full 
name. The mechanism allows user input to use the short name. 
 
While a line of table data must fill all fields of the table exactly (no more or less), you can 
tell the system to fill in the remaining arguments with “*” by putting “…” as your last 
value. Eg. 
 table: test(^item1 ^item2 ^item3 ^item4) 
 …. 
 Data: 
 lion 50 … 
This table will use * for item3 and item4 of lion. 
 



 53

ADVANCED FACTS 
 
Facts of Facts 
 
Suppose you do something like CreateFact( john eat (wet food peanuts)). What happens 
when you retrieve it into a fact set and then do _1 = ^last(@1) and get the fact 
disassembled onto _1, _2, _3, and 4?  What you get for _3 is a reference to a fact, that is, 
a number. You can decode that by using ^fact( 3 subject) or ^fact(_3 verb) or ^fact(_3 
object) to get wet or food or peanuts. The first argument to ^fact is a fact number. 
 
You get a fact number if you do _3 = CreateFact(….) and can decode _3 the same way. 
Naturally this function fails if you give it something that cannot be a fact reference. 
 
Reading and Writing Facts 
 
You can write a file of facts with ^export(filename @setid).  Filename is either a full path 
including drive or a path below the chatscript root directory. All non-dead, non-null facts 
in the set will be written to the file, one fact per line. If the file cannot be written or the 
setid is illegal, it returns FAILRULE. The flags of the fact will NOT include 
TRANSIENTFACT. 
 
You can read a corresponding file with ^import(filename @setid erase transient). 
Filename has the same interpretation. The second argument names the set where the 
digested facts will be stored. It is not cleared so incoming facts augment it. And if a fact 
repeats one already existing, no new fact is created but the set will have the old fact 
added to it.The third argument, if the word erase, will erase the file after reading it. Any 
other value is ignored. The fourth argument, if transient, will mark the facts as transient 
and they will disappear automatically at the end of the volley (so you better process them 
immediately). Any other value will be ignored and the facts will enter the user’s space 
permanently. If the file cannot be read, it returns FAILRULE. 
 
A rule file contains one rule per line. Rule format is like DICT/facts.txt 
 
(  subject  verb   object  ) 
 
or 
 
( subject verb object flags) 
 
The fields subject, verb, and object should contain no embedded blanks, unless the entire 
value is encased in double quotes. The fields may be normal or they may be facts 
themselves. E.g. 
( ( _ ~foods My_favorite_cuisine_is_Chinese. ) benfavorite cuisine 0x80 ) 
 
Flags, if supplied, should be a hex number or a normal integer number, representing 
property bits you want enabled (see values in facts.h).  



 54

ESOTERIC FACTS 
 
 
Compiled Script Table Arguments 
 
You can specify that a table argument string is to be compiled as output script. Normally 
it’s standard word processing like all English phrases. To compile it, you prefix the 
doublequoted string with the function designator ^. E.g., 
 DATA: 
 ~books “this is normal”  ^”[script a][script b] ^fail(TOPIC)” 
This acts like a typical string. You pass it around, store it as value of variables or as a 
field of a fact. Like all other strings, it remains itself whenever it is put into the output 
stream, EXCEPT if you pass it into the ^eval function. Then it will actual get executed 
So. To use that argument effectively, you would get it out of the fact you built and store it 
onto some variable (like _5 or $value) , and then ^eval(_5) or ^eval($value). 
 
FactSet Remaps 
 
Factset names like @1 are not mnemonic. You can “rename” them as follows: 
define: @authors @5 -- whenver the system sees @authors, it will use @5 
You can do this within a topic (limited to it) or outside a topic (globally thereafter). 
 
Defining your own queries 
 
The query code wanders around facts to find those you want.  But since facts can 
represent anything, you may need to custom tailor the query system, which itself is a 
mini-programming language.  The full query function is takes nine arguments and any 
arguments at the end you omit default themselves. 
 
All query kinds are defined in LIVEDATA/queries.txt and you can add entries to that (or 
revise existing ones). The essential things a query needs to be able to do is: 

1. Start with existing words or facts 
2. Find related words or facts  
3. Mark newly found words or facts so you don’t trip over them multiple times 
4. Mark words or facts that you want to ignore or be treated as a successful find 
5. Store found facts 

 
A query specification provides a name for the query and specifies what operations to do 
with what arguments, in what order.   
 
An essential notion is the “tag”. As the system examines facts, it is not going to compare 
the text strings of words with some goal. That would be inefficient. Instead it looks to see 
if a word or a fact has a particular “tag” on it. Each word/fact can have a single tag id, 
drawn from a set of nine. The tags ids are labeled ‘1’  thru ‘9’.  
 



 55

Another essential notion is the field/value. One refers to fields of facts or values of the 
incoming arguments, or direct values in the query script.  Here are the codes involved: 

1. s  = refers to the subject argument or the subject field of a fact 
2. v = refers to the verb argument or the verb field of a fact 
3. o = refers to the object argument or the object field of a fact 
4. p = refers to the propogate argument  
5. m = refers to the match argument 
6. ~set = use the explicitly named concept set 
7. ‘word = use the explicitly named word 
8. @n = use the named fact set 

 
Each query has is composed of four segments. Each segment is separated using a colon. 
Each segment is a series of actions, which typically involve naming a tag, a field, and 
then the operation, and possibly special arguments to the operation. 
 
You can separate things in a segment with a period or an underscore, to assist in visual 
clarity. Those characters are ignored. I always separate actions by underscores. The 
period I use to mark the end of literal values (~sets and ‘words). 
 
EXAMPLE 1 – PARIS as subject 
 
Consider this example:  we want to find facts about Paris. The system has these facts: 
 (Paris exemplar France)   and (Paris member ~capital) 
Our query will be ^query(direct_s Paris ? ?) which request all facts about a subject named 
Paris (to be stored in the default output factset @0). 
 
Segment one handles marking and/or storing initial values. You always start by naming 
the tag you want to use, then naming the field/value and the operation. The operations 
are: 

1.  t =  tag the item 
2. q = tag and queue the item 
3. < or >  scan from the item, tagging things found (more explanation shortly) 

 
The query direct_s, which finds facts that have a given subject,  is defined as  
  1sq:s:: 
This says segment 1 is 1sq and segment 2 is s and segments 3 and 4 have no data.  
Segment 1 says to start with a tag of ‘1’, use the subject argument and tag and queue it.  
 
Segment two says how to use the queue. The queue is a list of words or facts that will be 
used to find facts.  In our example, having stored the word Paris onto the queue, we now 
get all facts in which Paris participates as the subject ( the s: segment )  
 
Segment three tells how to disqualify facts that are found (deciding not to return them).  
There is no code here, so all facts found will be acceptable.  
 



 56

Segment four tells how to take disqualified facts as a source of further navigation around 
the fact space. There is nothing here either.  
 
Therefore the system returns the two facts with  Paris as the subject. 
 
Example 2 – Finding facts up in the hierarchy 
 
Assume you have this fact   ( 23  doyou  ~like)  and what you actually have is a specific 
verb like which is a member of ~like. You want to find facts using doyou and like and 
find facts where doyou matches and some set that contains like matches. The query for 
this is direct_v<o, which means you have a verb and you have an object but you want the 
object to match anywhere up in the hierarchy. < , which means the start of the sentence in 
patterns, really means the left side of something. And in the case of facts and concepts, 
the left side is the more specific (lower in the hierarchy) and the right side is most general 
(higher in the higherarchy) when the verb is member. 



 57

POS-Tagging and Pseudo Parsing  
 

ChatScript does not have a built-in parser because it degrades performance too much. But 
it does have a Part-Of_Speech (POS) Tagger to try to label how words get used. 
 
The result of this is two-fold. First, words are marked with concepts reflecting their parts 
of speech. And second, if you use part-of-speech limitations on keywords, like strike~v 
(meaning only the verb use of like), then the system can avoid reacting with “Why did 
you hit him” when the input is “He went on strike.” 
 
The pos-tagger uses dictionary information and a collection of grammar rules to decide 
on word use. Those rules are in LIVEDATA/posrules.txt if you want to alter them. 
 
The concepts that might be marked are high level and refined. A word can be marked 
with both where appropriate, like NOUN and NOUN_SINGULAR. 
 
The high concepts and refined concepts (indented) are: 
~NOUN 
 ~NOUN_SINGULAR ~NOUN_PLURAL
 ~NOUN_PROPER_SINGULAR ~NOUN_PROPER_PLURAL 
 ~NOUN_GERUND ~NOUN_CARDINAL   ~NOUN_INFINITIVE 
~VERB 
 ~VERB_INFINITIVE ~VERB_PRESENT 
 ~VERB_PRESENT_3PS ~VERB_PRESENT_PARTICIPLE 
 ~VERB_PAST ~VERB_PAST_PARTICIPLE 
~AUX_VERB 
 ~AUX_VERB_PRESENT ~AUX_VERB_PAST
 ~AUX_VERB_FUTURE 
~ADJECTIVE 
 ~ADJECTIVE_BASIC ~ADJECTIVE_MORE
 ~ADJECTIVE_MOST ~ADJECTIVE_PARTICIPLE 
 ~ADJECTIVE_CARDINAL ~ADJECTIVE_ORDINAL   

~ADJECTIVE_INFINITIVE 
~ADVERB 
 ~ADVERB_BASIC ~ADVERB_MORE ~ADVERB_MOST 
~DETERMINER 
~PREPOSITION 
~CONJUNCTION_COORDINATE ~CONJUNCTION_SUBORDINATE 
~PRONOUN_SUBJECT ~PRONOUN_OBJECT ~PRONOUN_POSSESSIVE 
~POSSESSIVE 
~TO_INFINITIVE ~THERE_EXISTENTIAL 
~COMMA ~PAREN 
~PARTICLE 
~WH_ADVERB 
 
Some of those are obvious and some aren’t.  



 58

For ~noun_gerund in I like swimming the verb gerund swimming is treated as a noun 
(hence called noun-gerund) but retains verb sense when matching keywords tagged with 
part-of-speech (i.e., it would match swim~v as well as swim~n). 
 
~number is not a part of speech, but is comprise of ~noun_cardinal (a normal number 
value like 17 or seventeen) and ~adjective_cardinal (also a normal numeral value) and 
~adjective_ordinal (which is also ~placenumber) like first. 
 
To can be many things. When used in the infinitive phrase To go, it is marked 
~to_infinitive. ~verb_infinitive gets special handling. It refers both to a match on the 
infinitive form of the verb, as well as the phrase with to attached—i.e., I like to swim  will 
match  (I like to ~infinitive) as will (I like ~infinitive). This allows you to use a pattern 
like  (I like [~infinitive ~participle])  treating I like running and I like to run as being the 
same meaning. This fails if the to is separated by an adverb as in To boldly go. 
 
~There_existential refers to the use of where not involving location, meaning the 
existence of, as in There is no future. 
 
~Particle refers to a preposition piece of a compound verb idiom which allows being 
separated from the verb. If you say “I will call off the meeting”, call_off is the composite 
verb and is a single token. But if you split it as in “I will call the meeting off, then there 
are two tokens. The original form of the verb will be call and the canonical form of the 
verb will be call_off, while the free-standing off will be labeled ~particle. 
 
~verb_present will be used for normal present verbs not in third person singular like I 
walk and ~verb_present_3ps will be used for things like he walks 
 
~wh_adverb refers to classic question words like Where are you, When will we go, etc. 
 
~possesive refers to ‘s and ‘ that indicate possession, while possessive pronouns get their 
own labeling ~pronoun_possessive. ~pronoun_subject is a pronoun used as a subject (like 
he) while pronoun_object refers to objective form like (him) 
 
Pseudo Parsing 
 

You can simulate some parsing using patterns. Tommorow begins the submission month 
for this year’s Loebner Prize. While I doubt anyone other than me can get together a 
ChatScript-based entry in time, I thought I would provide some code that would assist in 
that direction and teach esoteric features of ChatScript (not that you need esoterica yet, 
since you are still digesting the basics). 

The ancestor of ChatScript, CHAT-L, had a built-in parser. It was too slow for long 
sentences and had been designed for newspaper English, not chat, so I did not include a 
parser in ChatScript, preferring to build in a POS tagger instead (still a work in 
progress).  One can do some pseudo-parsey things with ChatScript, however. 



 59

Suppose you get input like John is taller than Mary and Mary is taller than Sue. Who is 
shorter, John or Sue?  Anyone can write rules to handle that specific question. The trick 
is to write few rules that are general. The following esoteric use of ChatScript illustrates 
principles and functions for behaving a bit like a parser. The goal is to handle incoming 
data in one or more sentences, across one or more volleys, and locally handling pronoun 
references. This includes as input: 
    Tom is taller than Mary who is taller than Sarah. 
    Tom is fatter than Joan but she is thinner than Harry. 
    Tom is taller than Mary but shorter than Sarah. 
    Tom is taller than Mary. Sarah is shorter than Tom. … 

The code below handles acquiring the facts (not answering the questions) but organizes 
the data for easy retrieval. It aims for generality. The tricks involve how ChatScript 
manages pattern matching. Stage one is to preprocess the input to mark in the dictionary 
where every word and ALL of its concept and dictionary inheritances occur in the 
sentence. So if word 1 of the sentence is “tiger”, then tiger and animal and mammal and 
~animals and ~zoo might all get marked as occurring at word 1. So when a pattern tries 
to match, it can find any of those as being at position 1.  But script can also mark word 
positions, and it can unmark them as well. So the FACTER rule matches a series of items 
and after creating a fact of them, erases their mark so a rescan of the same rule can try to 
find a new series of items. 

 

concept: ~extensions (and but although yet still) 
concept: ~than (then than) 

topic: ~compare_test system repeat () 

# set local pronoun 
s: ( ~propername * [who she he]) refine() 
a: ( _~propername *~2 _who )  $$who = ‘_0 
a: ( _~femalename * _she ) $she = ‘_0 
a: ( _~malename * _he )  $he = ‘_0 

# resolve pronouns 
s: ( [who she he]) refine() 
a: ( _who $$who) mark(~propername _0) 
a: ( _he $he) mark(~propername _0) 
a: ( _she $she) mark(~propername _0) 

s: ( _~propername * ~propername *~2 _~extensions {be} {less more} ~adjective ~than 
~propername) 
mark(~propername _1 ) $$and = ‘_0 



 60

#! Tom is more tall than Mary 
#! Tom is taller than Mary and Tom is shorter than Joan. 
#! Tom is less tall than Mary 
#! Tom is taller than harry but shorter than Joan. 
s: FACTER ( _~propername {be} {more}  _{less least}  _~adjective ~than 
_~propername ) 
$$order = 1 
if (_1) { $$order = $$order * -1 } # flip order 
if ($adj) 
{ 
    if ($adj != _2 ) # they differ 
 { 
 if (query(direct_svo _2 opposite $adj ) ) # its the opposite 
 { 
 $$order = $$order * -1 # flip order 
 } 
 else {$adj = null} # accept new adjective 
 } 
} 

# adjust pronouns 
if (_0 == who) { _0 = $$who} 
else if (_0 == he) { _0 = $he} 
else if (_0 == she) { _0 = $she} 
else if (_0 ? ~extensions) { _0 = $$and} 
if (_2 == who) { _2 = $$who} 
else if (_2 == he) { _2 = $he} 
else if (_2 == she) { _2 = $she} 

if (!$adj) 
{ 
  $adj = _2 
 if ($$order == 1) { ^createfact(_0 $adj _3)} 
 else {^createfact(_3 $adj _0)} 
} 
else # already have an adjective to run with 
{ 
 if ($$order == 1) 
 { 
 ^createfact(_0 _2 _3) 
 } 
 else  
 { 
 ^createfact(_3 $adj _0) 
 } 
} 



 61

unmark( ~propername _0) 
unmark(~adjective _2 ) 
unmark(~propername _3 ) 
$$who = _3 
retry() 

A responder for handling questions given 2 people is: 

#! who is taller, Tom or Harry? 
#! Of Tom and harry, who is taller? 
#! who is less tall, Tom or Harry? 
#! who is the taller of Mary and Harry 
#! Of Tom and harry, who is least tall? 
?: COMPARE ([which who what] be {the} {more most} _{less least} _~adjective < * 
_~propername {and or } _~propername) 
# 0=less 1=adj 2 = person1 3 = person2 
$$order = 1 
if (_0) { $$order = $$order * -1 } # flip order 
if ($adj) 
{ 
 if ($adj != _1 and query(direct_svo _1 opposite $adj ) ) # they differ 
 { 
 $$order = $$order * -1 
 } 
} 

# find if _3 is more than _2 
nofail(RULE eval(query(direct_vo ? $adj _2))) # who is taller than _2 
_7 = @0subject 
loop() 
{ 
 if (_7 == _3) {FAIL(rule)} # now matched 
 query(direct_vo ? $adj _7) # who is taller than this 
 _7 = @0subject 
} 

if ( $$order == 1) # normal order 
{ 
  if (@0subject) {_3 is.} 
  else {_2 is.} 
} 
else # inverse order 
{ 
 if (@0subject) {_2 is.} 
 else {_3 is.} 
} 



 62

The system builds facts in a specific order, like (X taller Y) and if a shorter comes first  it 
flips the order and rewrites using common adjective notation. 

 



 63

Editing Non-topic Files 
 
Non-topic files include the contents of DICT and LIVEDATA. 
 
DICT files 
 
You may choose to edit the dictionary files. There are 3 kinds of files.  The facts0.txt file 
contains hierarchy relationships in wordnet. You are unlikely to edit these. The dict.bin 
file is a compressed dictionary which is faster to read. If you edit the actual dictionary 
word files, then erase this file. It will regenerate anew when you run the system again, 
revised per your changes.  The actual dictionary files themselves… you might add a word 
or alter the type data of a word. The type information is all in dictionarySystem.h 
 
LIVEDATA files 
 
The substitutes.txt file consists of pairs of data per line. The first is what to match. 
Individual words are separated by underscores, and you can request sentence boundaries 
< and > . The output can be missing (delete the found phrase) or words separated by plus 
signs (substitute these words) or a %word which names a system flag to be set (and the 
input deleted). The output can also be prefixed with ![…] where inside the brackets are a 
list of words separated by spaces that must not follow this immediately. If one does, the 
match fails. You can also use > as a word, to mean that this is NOT at the end of the 
sentence. 
 
The queries.txt file defines queries available to ^query.  A query is itself a script. See the 
file for more information. 
 
The canonical.txt file is a list of words and override canonical values. When the word on 
the left is seen in raw input, the word on the right will be used as its canonical form. 
 
The lowercasetitles.txt file is a list of lower-case words that can be accepted in a title. 
Normally lower case words would break up a title. 
 
The allownonwords.txt file is a list of non-words that the script compiler should allow in 
a pattern or output w/o warning you they may be misspellings. 
 
 
 



 64

 Server/LINUX 
 

While the system comes prepped to run under Windows, it can compile and run under 
LINUX. The file LinuxChatScript is a file you can set to executable and run. To build it 
from scratch, follow the steps in LinuxCompile.bat . Server data is logged into 
serverLog.txt, under control of  :serverlog 
 
Running the Server 
 
When you run the LINUX program, it defaults to server mode, port 1024. The Windows 
version defaults to standalone mode. 
Either LINUX or windows versions accept the following command line args: 
 
 ChatScript port=xxxx    # be a server on this port 
 ChatScript local   # run locally, not as a server 
 ChatScript client=ip:port  # be a client to test a remote server 
 ChatScript client=localhost:port # be a client to test a local server 
 
There are batch files server.bat (be a server on the default port), localClient.bat (be a local 
client). Remember that to be a remote server you need to make your port available for 
inbound TCP if you have a firewall- if you don’t have a firewall you must be insane.). 
 
If the engine is not allowed to alter the server machine, you can start it with the parameter 
“sandbox” (see sandboxserver.bat) which disables Export and System calls. 
 
Communicating with the Server 
 
The client webpage/program connects on a socket (or http webpage) to the ip and port of 
the server. The message it sends is a concatenation of three null-terminated text strings.  
 
The first string is the user login name. The second is the id of the chatbot to talk to. If this 
is a null string, the system will connect to the default bot. The third string is the message. 
If the message is null, this is a start of new conversation. This MUST be the first thing 
you do with a new user.  Ideally you do it whenever a new conversation is starting with 
that user.  The message sent to the server during a conversation should never be null 
(since that looks like a conversation start). Either always prepend a blank on every line 
from the user, or add a blank if the user presses ENTER without anything else. 
 
The server shuts down the connection after each volley, so you have to reinitiate a 
connection for each volley. Normally you send the “start of new conversation” only on 
the first of many volleys. As long as the user is connected to the webpage, for example, 
you wouldn’t send it again. 
 
The chatbot can wait forever for each input (the connection is terminated for each volley) 
and the only way to know that the human “left” is when the human “comes back” with a 
start of a new conversation. 



 65

 
If you run the Windows ChatScript engine with client=ip:port as an argument, it will act 
as a client to talk to and test the server. The ip address must be numeric and the :port is 
optional. The client will start a conversation and then loop with you conversing to it. 
 
Testing the Server 
 
You can test everything on your own machine in Windows.  Launch the server by double 
clicking on server.bat and then launch the client by double clicking on localclient.bat. 
Since this is on your own machine, firewall opening the port is unnecessary. 
 
For LINUX, just perform the equivalent commands of the batch files (except that since 
you can’t readily run multiple apps, you’ll have to background the server presumably by 
doing a nohup command on it.  
 
Preparing for compiling on the Server 
 
I develop the source on a Windows machine and transfer it to a LINUX box. To insure 
the source does not have carriage returns, I use :clean to read and write all src directory 
files without carriage returns. 
 
Unique names using a server 
 
When you have a server, the system assumes the user names will be unique (comes from 
a private system).  If your server is public, people’s names can collide and the system will 
think both people are the same. If you send the server the user’s name with a period in 
front of it, the server will automatically prepend the name with the user’s IP address, 
keeping them unique. Of course, if the user eventually comes back some other day on a 
different IP address, they lose their history. Can’t be helped.  An alternative is to ignore 
their login name and log them in as “guest”, which will append their ip address to that. 
 
Testing for server presence 
 
If you send the message:  null 1 null  (that’s the null string user id, the string of the 
character “1” as bot id, and the null string message, the server will send back the string of 
the character “1”, with no logging done and minimal load on the server. This constitutes 
an echo-test to prove the server is running. 



 66

WHICH BOT? 
 

The system can support multiple bots cohabiting the same engine.  You can restrict topics 
to be available only to certain bots (see Advanced Topics). You can restrict rules to being 
available only to certain bots by using something like 

?: ($bot=harry …)   
?: (!$bot=harry …). 
t: ($bot=harry) My name is harry. 

 
The demo system actually has two bots in it, harry and Georgia.  By default you get 
harry. You can get Georgia by logging in as yourname:georgia.  And you can confirm 
who she is by asking what is your name. 
 
You specify which bot you want when you login, by appending :botname  to your login 
name.  When you don’t do that, you get the default bot. How does the system know what 
that is?  It looks for a fact in the database whose subject will be the default bot name and 
whose verb is defaultbot.  If none is found, the default bot is called anonymous, and 
probably nothing works at all.   
 
Typically when you build a level 1 topic base (e.g., :build ben or :build 1 or whatever), 
that layer has the initialization function for your bot(s) otherwise your bot cannot work. 
This function is invoked when a new user tries to speak to the bot and tells things like 
what topic to start the bot in and what code processes the users input. You need one of 
these functions for each bot, though the functions might be pure duplicates (or might not 
be).  In the case of harry, the function is 

outputmacro: harry()  
^addtopic(~introductions) 
$control_pre = ~control 
$control_main = ~control 
$control_post = ~control 

SimpleControl.top also has a function that declares who the default bot is. 
  table: defaultbot (^name) 

^createfact(^name defaultbot defaultbot) 
DATA: 
harry  

You can change default bots merely by requesting different build files that name the 
default, or by editing your table. 
 
Topics By Bot 
 
You should already know that a topic can be restricted to specific bots.  Now you learn 
that you can create multiple copies of the same topic, so different bots can have different 
copies. These form a topic family with the same name. The rules are: 
1. the topics share the union of keywords  
2. :verify can only verify the first copy of a topic it is allowed access to 

When the system is trying to access a topic, it will check the bot restrictions. If a topic 
fails, it will try the next duplicate in succession until it finds a copy that the bot is allowed 



 67

to use. This means if topic 1 is restricted to ben and topic2 is unrestricted, ben will use 
topic1 and all other bots will use topic2. If the order of declaration is flipped, then all bots 
including ben will use topic 2 (which now precedes topic 1 in declaration). 
 
You can also use the :disable and :enable commands to turn off all or some topics for a 
personality.  
 
 



 68

Common Script Idioms 
 
Selecting Specific Cases 
 
To be efficient in rule processing, I often catch a lot of things in a rule and then refine it.   
 u: ( ~country) ^refine()   # gets any reference to a country 
  a: (Turkey) I like Turkey 
  a: (Sweden) I like Sweden 
  a: (*) I’ve never been there. 
Equivalently one could invoke a subtopic, though that makes it less obvious what is 
happening, unless you plan to share that subtopic among multiple responders. 
 u: (~country) ^respond(~subcountry) 
 

topic: ~subcountry system[] 
 u: (Turkey) … 
 u: (Sweden) … 
 u: (*) … 
 
The subtopic approach makes sense in the context of writing quibbling code. The outside 
topic would fork based on major quibble choices, leaving the subtopic to have potentially 
hundreds of specific quibbles. 
 ?: (<what) ^respond(~quibblewhat) 
 ?: (<when) ^respond(~quibblewhen) 
 ?: (<who) ^respond(~quibblewho) 
 … 
 topic: ~quibblewho system [] 
 ?: (<who knows) The shadow knows 
 ?: (<who can) I certainly can’t. 

 
Using ^reuse 
 
To have a conversation, you want to volunteer information with a gambit line. And that 
same information may need to be given in response to a direct question by the user. 
^reuse let’s you share information. 
 

t:   HOUSE () I live in a small house 
u: (where * you * live) ^reuse(HOUSE) 

 
The rule on disabling a rule after use is that the rule that actually generates the output gets 
disabled. So the default behavior (if you don’t set noerase on the topic or the rule) is that 
if the question is asked first, it reuses HOUSE. Since we have given the answer, we don’t 
want to repetitiously volunteer it, HOUSE gets disabled. But, if the user repetitiously asks 
the question (maybe he forgot the answer), we will answer it again because the responder 
didn’t get disabled, just the gambit. And disabling applies to allowing a rule to try to 
match, not to what it does for output. So one can reuse that gambit’s output any number 
of times.  If you don’t want that behavior you can either add a disable on the responder 



 69

OR tell ^reuse to skip used rules by giving it a second argument (anything). So one way 
is:  

t:   HOUSE () I live in a small house 
u: SELF (where * you * live) ^disable(RULE SELF) ^reuse(HOUSE) 

 
and the other way is: 

t:   HOUSE () I live in a small house 
u: (where * you * live) ^reuse(HOUSE skip) 

 
Meanwhile, in the original example, if the gambit executes first, it disables itself, but the 
responder can still answer the question by saying it again. 
 
Now, suppose you want to notice that you already told the user about the house so if he 
asks again you can say something like: You forgot? I live in a small house. How can you 
do that. One way to do that is to set a user variable from HOUSE and test it from the 
responder. 

t:   HOUSE () I live in a small house $house = 1 
u: (where * you * live) [$house You forgot?] ^reuse(HOUSE) 

If you wanted to do that a lot, you might make an outputmacro of it: 
 outputmacro:  ^heforgot(^test) [^test You forgot?] 
t:   HOUSE () I live in a small house $house = 1 
u: (where * you * live) heforgot($house ) ^reuse(HOUSE) 

Or you could do it on the gambit itself in one neat package. 
outputmacro:  ^heforgot(^test) [^test You forgot?] ^test = 1 
t:   HOUSE () heforgot($house )  I live in a small house.  
u: (where * you * live) ^reuse(HOUSE) 

 



 70

QUESTIONS/HAND-HOLDING 
 

This is a reference manual, not a tutorial guide. Maybe you didn’t see how to 
do what you wanted to do. Maybe it’s possible at present and maybe it’s not. 
 
Feel free to email Bruce Wilcox at gowilcox@gmail.com and ask questions. 
If you find something you can’t do, maybe I’ll whip up a new release 
version in which it is possible. 

mailto:gowilcox@gmail.com


 71

Esoterica and Fine Detail 
 
Prefix labeling in stand-alone mode 
 
You can control the label put before the bot’s output and the user’s input prompt by 
setting variables $botprompt and $userprompt. I set them in the bot’s initialization code, 
though you can dynamically change them. The values can be literal or a format string. 
The value is used as the prompt. Hence the following example: 

$userprompt = ^"$login: >" 
$botprompt = ^ "HARRY:  " 

The user prompt wants to use the user’s login name so it is a format string, which is 
processed and stored on the user prompt variable. The botprompt wants to force a space 
at the end, so it also uses  a format string to store on the bot prompt variable. 
 
In color.tbl is there a reason that the color grey includes both building and ~building?  
 
Yes. Rules often want to distinguish members of sets that have supplemental data from 
ones that don’t.  The set of ~musician has extra table data, like what they did and doesn’t 
include the word musician itself. Therefore a rule can match on ~musician and know it 
has supplemental data available. 
 
This is made clearer when the set is named something list ~xxxlist. But the system 
evolved and is not consistent. 
 
How are double-quoted strings handled? 
 
It depends on the context. In input/pattern context, it means translate the string into an 
appropriately tokenized entity. Such context happens when a user types in such a string: 
 I liked “War and Peace” 
It also happens as keywords in concepts:  

concept: ~test[ “kick over”] 
and in tables: 
 DATA: 
  “Paris, France” 
and in patterns: 
 u: (“do you know” what ) 
In output context, it means print out this string with its double quotes literally. E.g. 
 u: (hello)  “What say you?    “    # prints out    “What say you?   “ 
 
There are also the functional interpretations of strings; these are strings with ^ in front of 
them.   
 
They don’t make any sense on input or patterns or from a user, but they are handy in a 
table. They mean compile the string (format it suitable for output execution) and you can 
use the results of it in an ^eval call. 
 



 72

On the output side, a functional string means to interpret the contents inside the string as 
a format string, substituting any named variables with their content, preserving all 
internal spacing and punctuation, and stripping off the double quotes. 
 u: (test)  ^”This  $var    is good.”  # if $var is kid  the result is This kid     is good. 
 
What really happens on the output side of a rule? 
 
Well, really, the system “evaluates” every token.  Simple English words and punctuation 
always evaluate to themselves, and the results go into the output stream. Similarly, the 
value of a text string like “this is text” is itself, and so “this is text” shows up in the 
output stream. And the value of a concept set or topic name is itself. 
 
System function calls have specific unique evaluations which affect the data of the 
system and/or add content into the output stream. User-defined macros are just script that 
resides external to the script being evaluated, so it is evaluated.  Script constructs like IF, 
LOOP, assignment, and relational comparison affect the flow of control of the script but 
don’t put anything themselves into the output stream when evaluated. 
 
Whenever a variable is evaluated, it doesn’t put its contents into the output stream--its 
contents are evaluated and their result is put into the output stream. Variables include 
user variables, function argument variables, system variables, match variables, and factset 
variables.  
 
For system variables, their values are always simple text, so that goes into the output 
stream. And match variables will usually have simple text, so they go into the output 
stream.  You can assign into match variables yourself, so really they can hold anything. 
 
So what result s from this: 
 u: (x)  

$var2 = apples   
$var1= join($  var2) 
I like $var1 

$var2 is set to apples. It stores the name (not the content) of $var2 on $var1 and then I 
like is printed out and then  the content of $var1 is then evaluated, so $var2 gets 
evaluated, and the system prints out  apples. 
 
This evaluation during output is in contrast to the behavior on the pattern side where the 
goal is presence, absence, and failure.  Naming a word means finding it in the sentence. 
Naming a concept/topic means finding a word which inherits from that concept either 
directly or indirectly. Naming a variable means seeing if that variable has a non-null 
value. Calling a function discards any output stream generated and aside from other side 
effects means did the function fail (return a fail code) or not. 
 
How does the system tell a function call w/o ^ from English 
 
If like is defined as an output macro and if you write: 



 73

 t: I like (somewhat) ice 
how does the system resolve this ambiguity? Here, white space actually matters. First, if 
the function is a builtin system function, it always uses that.  So you can’t write this: 
 t: I fail (sort of) at most things 
When it is a user function, it looks to see if the ( of the argument list is contiguous to the 
function name or spaced apart. Contiguous is treated as a function call and apart is treated 
as English. This is not done for built-ins because it’s more likely you spaced it accidently 
than that you intended it to be English. 
 
How should I go about creating a responder? 
 
First you have to decide the topic it is in and insure the topic has appropriate keywords if 
needed. 
 
Second, you need to create a sample sentence the rule is intended to match. You should 
make a #! comment of it.  Then, the best thing is to type :prepare  followed by your 
sentence. This will tell you how the system will tokenize it and what concepts it will 
trigger. This will help you decide what the structure of the pattern should be and how 
general you can make important keywords. 
 
What really happens with rule erasure? 
 
The system’s default behavior is to erase rules that put output into the output stream, so 
they won’t repeat themselves later. You can explicitly make a rule erase with ^erase() and 
not erase with ^noerase() and you can make the topic not allow responders to erase with 
noerase as a topic flag. So… if a rule generates output, it will try to erase itself.  If a rule 
uses ^reuse(), then the rule that actually generated the output will be the called rule. If for 
some reason it cannot erase itself, then the erasure will rebound to the caller, who will try 
to erase himself. Similarly, if a rule uses ^refine(), the actual output will come from a 
rejoinder(). These can never erase themselves directly, so the erasure will again rebound 
to the caller. 
 
Pattern Matching Anomolies 
 
Normally you match words in a sentence. But the system sometimes merges multiple 
words into one, either as a proper name, or because some words are like that. For 
example “here and there” is a single word adverb. If you try to match “We go here and 
there about town” with 

u: (* here *) xxx 
you will succeed. The actual tokens are “we”  “go”  “here and there”  “about”  “town”. 
but the pattern matcher is allowed to peek some into composite words. When it does 
match, since the actual token is “here and there”, the position start is set to that word 
(e.g., position 3), and in order to allow to match other words later in the composite, the 
position end is set to the word before (e.g., position 2). This means if you pattern is  
 u: (* here and there *)  xxx 



 74

it will match, by matching the same composite word 3 times in a row. The anomaly 
comes when you try to memorize matches.  If your pattern is 
 u: (_* and _* ) xxx 
then _0 is bound to words 1 & 2 “we go”, and matches “here and there”, and _1 matches 
the rest, “about town”. That is, the system will NOT position the position end before the 
composite word. If it did, _1 would be “here and there about town”. It’s not. 
 
Also, if you try to memorize the match itself, you will get nothing because the system 
cannot represent a partial word. Hence 
 u: (* _and * ) xxx 
would memorize the empty word for _0. 
 
If you don’t want something within a word to match your word, you can always quote it. 
 u: (* ‘and *) xxx 
does not match “here and there about town”. 

 
The more interesting case comes when a composite is a member of a set.  Suppose: 

concept: ~myjunk (and) 
u: (* _~myjunk * ) xxx 

What happens here?  First, a match happens, because ~myjunk can match and inside the 
composite. Second memorization cannot do that, so you memorize the empty word.  If 
you want to not match at all, you can write: 

u: (* _’~myjunk * ) xxx 
In this case, the result is not allowed to match a partial word, and fails to match. 
However,  given “ My brothers are rare.” and these: 

concept: ~myfamily (brother) 
u: (* _’~ myfamily * ) xxx 

the system will match and store _0 = brothers. Quoting a set merely means no partial 
matches are allowed. The system is still free to canonicalize the word, so brothers and 
brother both match.  If you wanted to ONLY match brother, you could have quoted it in 
the concept definition. 

concept: ~myfamily (‘brother) 
 



 75

AutoGeneration of Responders 
 

Stylistically, I write a lot of topics which more or less alternate between asking a question 
and providing the corresponding answer for the chatbot. E.g. 
 
topic: ~food […] 
t: What do you typically have for lunch?  
t: I usually have a sandwich for lunch. 
t: Where do you usually have lunch? 
t: I eat lunch at college. 
 
In such cases I usually want the chatbot to be able answer the question directly if asked of 
it and, of course, then not volunteer the answer again. To do this I have to write 
responders that match the question and then ^reuse the answering gambit (after first 
labeling it for reuse).  This back and forth is tedious, as is writing the responders. So I’ve 
semi-automated the process. 
 
You can attach special comments (#ai) to automatically generate reasonable responders. 
You can use this to reuse a gambit or to generate a completely new responder. There are a 
few ground rules.  
 
First, each rule must start on a new line, though it can be indented in that line. This is 
good practice anyway.  
 
Second, the data must be in a file labeled *.ai.  If you give the :generate command and 
name filename (with or without the .ai) the system will generate a corresponding file 
named *.top, comprising both your ordinary script and newly generated script. 
 
Third, the special rule begins with #ai and fits on a single line. If there is an = and a 
sentence BEFORE the =, that is the question to respond to. If there is nothing before the 
=, that means use the input from the gambit before the current one. If there are words 
AFTER the =, that is the answer to give in response to the before. If there are no words 
AFTER the =, that means reuse the label of the most recent gambit. If you have nothing 
before or after the =, you may omit it. 
 
t: What do you typically have for lunch?  
t: WHATLUNCH() I usually have a sandwich for lunch. 
#ai 
#ai = 
#ai What is your usual lunch? = 
#ai What do you eat for lunch? = I eat sandwiches. 
 
The above illustrates the possibilities. The first two #ai’s say to use the prior gambits 
output (What do you typically have for lunch?) and reuse the answer from the current 
labeled gambit (WHATLUNCH). The second #ai says the question to respond to is what 



 76

is your usual lunch?, again reusing WHATLUNCH.  The third #ai creates a new question 
What do you eat for lunch? And a new answer I eat sandwiches. 
 
The system automatically builds a semi-generalized pattern where the words of the 
question are encased in << >>  so they can occur in any order. And, the system ignores 
what it considers to be useless words. It also automatically flips any word with a 
canonical form listed in LIVEDATA/canonical.txt and uses the canonical form (so 
pronoun your becomes you). 
And it takes LIVEDATA/generalizer.txt and uses the pairs there to switch. So if your 
question was I like wine, the file might generalize like to ~like which are a collection of 
synonyms for like. If you generalize to null, the system ignores the word. I do this for 
“a”, which means all the determines a,an,the disappear. 
 



 77

Esoterica and Fine Detail 
 

You've been building and chatting and something isn’t right but it’s all confusing.  
Maybe you need a fresh build.  Here is how to get a clean start.  
 
0. Quit chatscript. 

 
 
1.  Empty the contents of your USER folder, but don’t erase the folder.   

 
This gets rid of old history in case you are having issues around things you’ve said before 
or used from the chatbot before. 
 
2. Empty the contents of your TOPIC folder, but don’t erase the folder. 

 
This gets rid of any funny state of topic builds. 
 
3. :build 0  - rebuild the common layer 
4. :build xxx – whatever file you use for your personality layer 

 
Quit chatscript.   Start up and try it now. 


	Simple Debugging			20
	Advanced Patterns 			31
	Simple Editing the Script
	Fast Overview of SimpleTopic.top file
	Rejoinders
	Rule Labels
	In sequence  ( )
	Sentence boundaries < and >
	Simple Indefinite Wildcards *
	Precise Wildcards *1 …
	Range-restricted Wildcards *~1 …

	Unordered Matching  <<  >>
	s: ( I < * love < * birds ) I love birds too.
	s: ( << I birds love >> ) I love birds too.
	Choices [ ]
	Canonization
	Not !
	Optional Words  { }
	Word Commands
	Direct Output
	AutoFormat
	Formatted double quotes
	Literal Output 
	Randomized Output []
	Testing a chatbot
	The typical thing I do is sit and chat with the bot until it says something I know is wrong.

	VARIABLES
	System-used $variables
	Macros
	Backward Wildcards  *-1
	Question and exclamation ?  ‘!
	Literal Next  
	More comparison tests  & and ?
	Comparison with C++ #define in dictionarysystem.h
	Indirect pattern elements
	Loop Construct
	If Construct
	Output Macros
	System Functions
	Control Functions
	Number Functions
	Output Functions
	Word Functions
	Simple Creating Facts
	Accessing Facts
	System-reserved verbs
	@Fact-Sets
	Fact Indexing
	“Mark Twain”  “Huckleberry Finn” 1884
	Reading and Writing Facts
	DICT files
	LIVEDATA files
	Running the Server
	Communicating with the Server
	Testing the Server
	Topics By Bot
	Selecting Specific Cases


